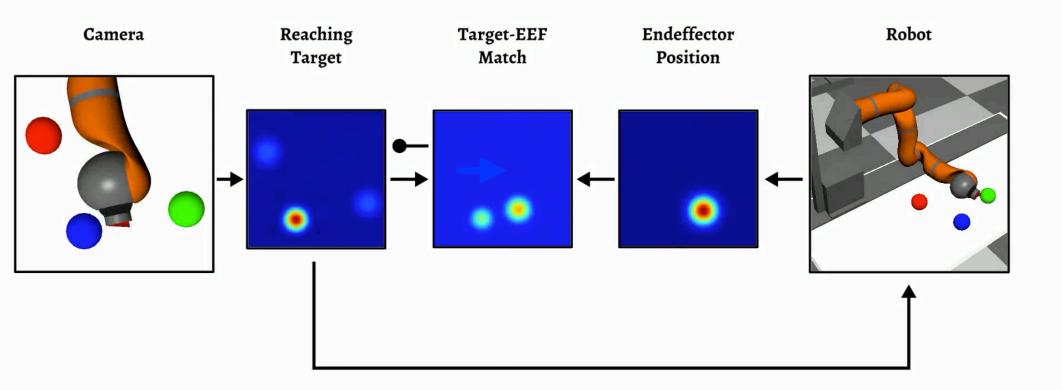
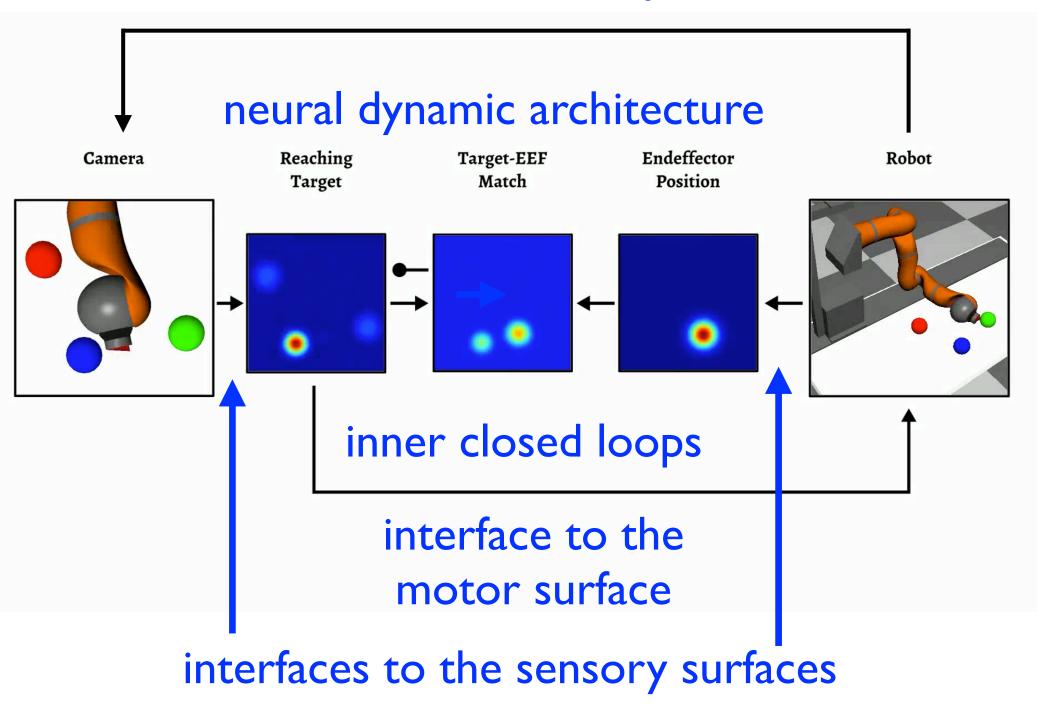
Foundational Concepts of DFT

Gregor Schöner gregor.schoener@ini.rub.de

A DFT architecture

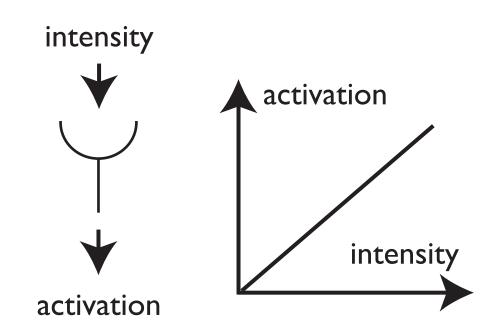


outer closed loop



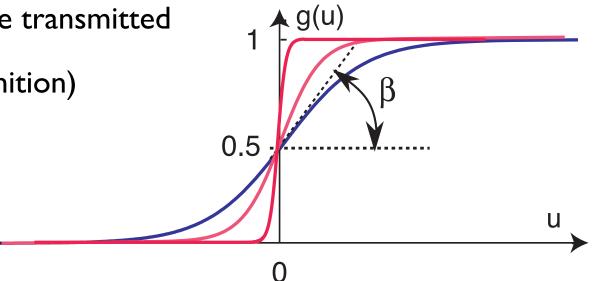
Sensors

- transform a physical intensity into a neural activation
- intensity: light, sound, displacement
- neural activation: membrane potential, spike rate



Activation

- activation as an abstraction, defined relative to sigmoidal threshold function
 - Iow levels of activation are not transmitted (to other neural systems, to motor systems)
 - high levels of activation are transmitted
 - threshold at zero (by definition)



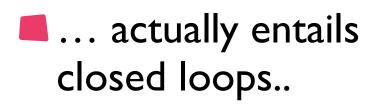
Motors

transform activation into physical action

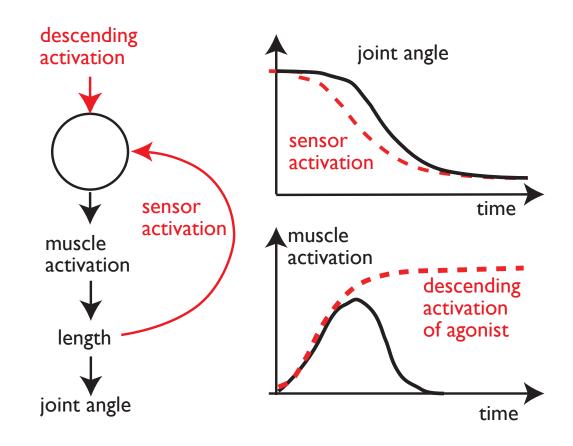
… muscles



Motors



and is dynamic in nature!



Sensory surfaces

many sensors...

📒 in the retina

the cochlea

the skin ...

form an anatomical sensory surface...

Functional sensory surfaces

vision

📕 visual space

oriented contrasts in visual space

movement direction in visual space

audition

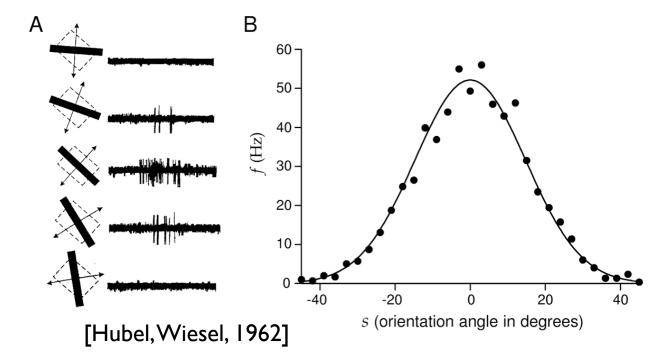
haptics

📕 texture ..

Neural representation of functional sensory surfaces

extract features from the anatomical sensory surfaces by input-driven neural networks (essentially feedforward)

as characterized by tuning curves/ receptive fields



Neural representation of functional sensory surfaces

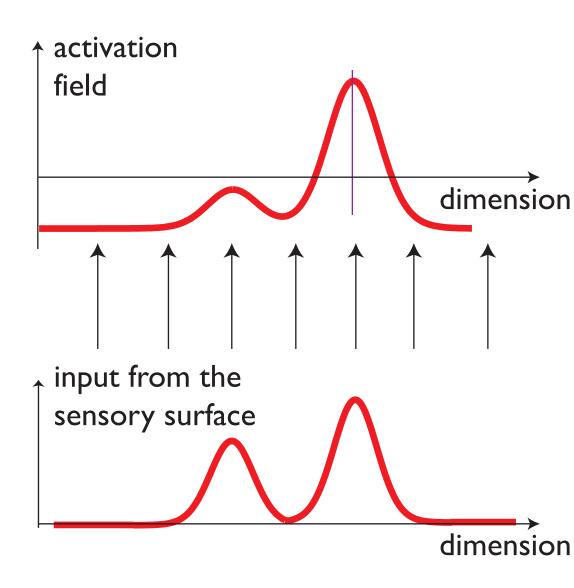
activation field dimension ↑ input from the sensory surface dimension

leading to neural maps:

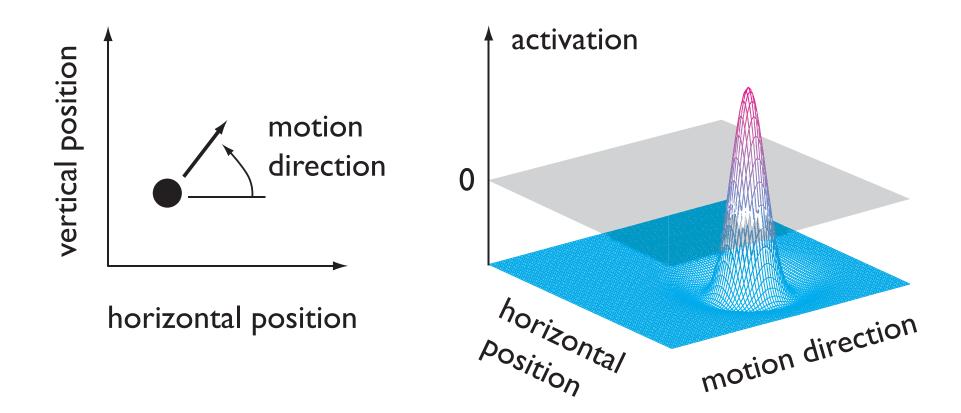
space code/population code

Neural fields

- the discrete sampling of such neural maps by individual neurons does not matter
- => activation fields



Peaks of activation in perceptual neural fields represent objects

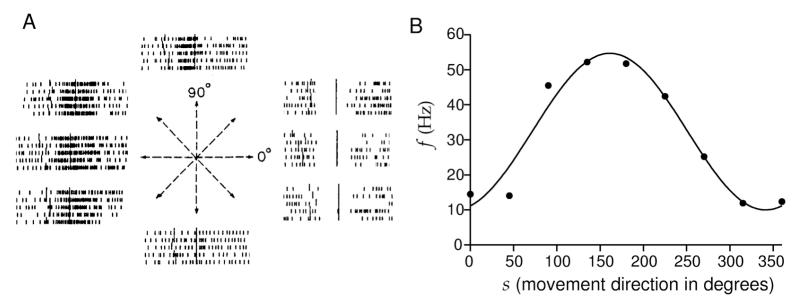


Motor surfaces

the sets of muscles that actuate the degrees of freedom of the body .. anatomical motor surface

Functional motor surfaces

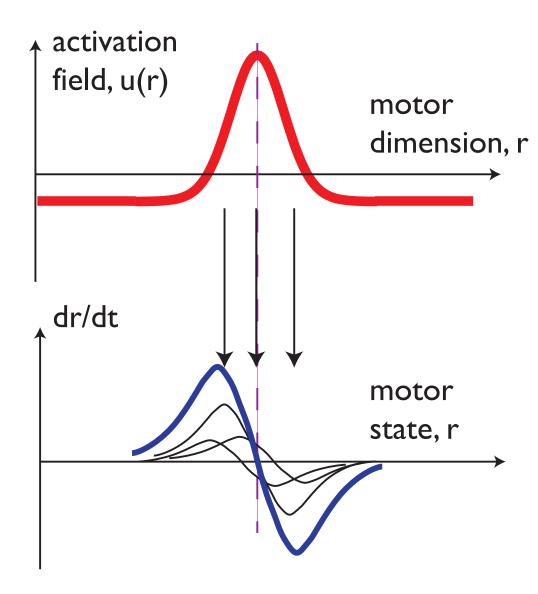
- the parameters describing movements... movement direction, amplitude etc..= functional motor surface
- the (essentially) forward connectivity to the muscular systems (synergies) implement functional motor surfaces..



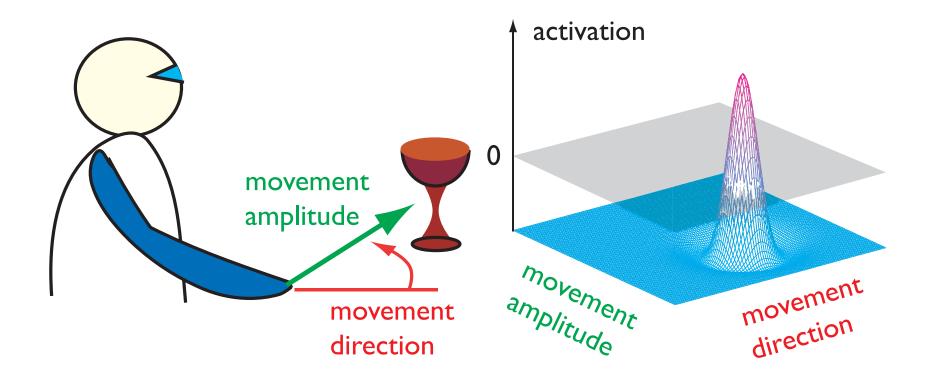
[Georgopoulos, Schwartz, Kalaska, 1986]

Neural fields

neural fields represent the functional motor surface through their connectivity to the anatomical motor surface



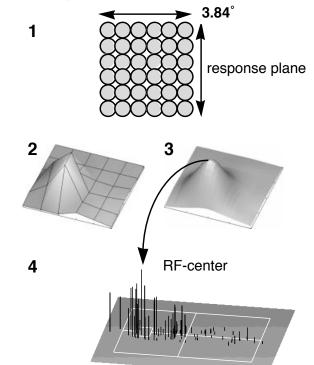
Peaks of activation in motor neural fields represent motor intentions

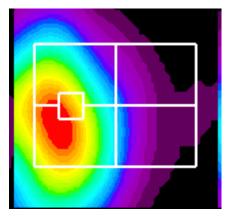


Link to population code

Neural fields: Distributions of population activation (DPA)

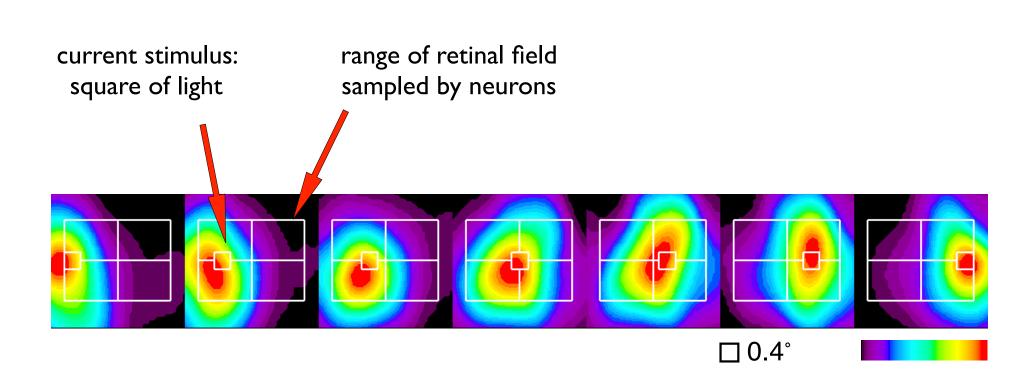
- sensory: primary visual cortex
- determine RF profile for each cell
- superpose these weighted by the current neural firing rate
- => DPA defined over retinal space





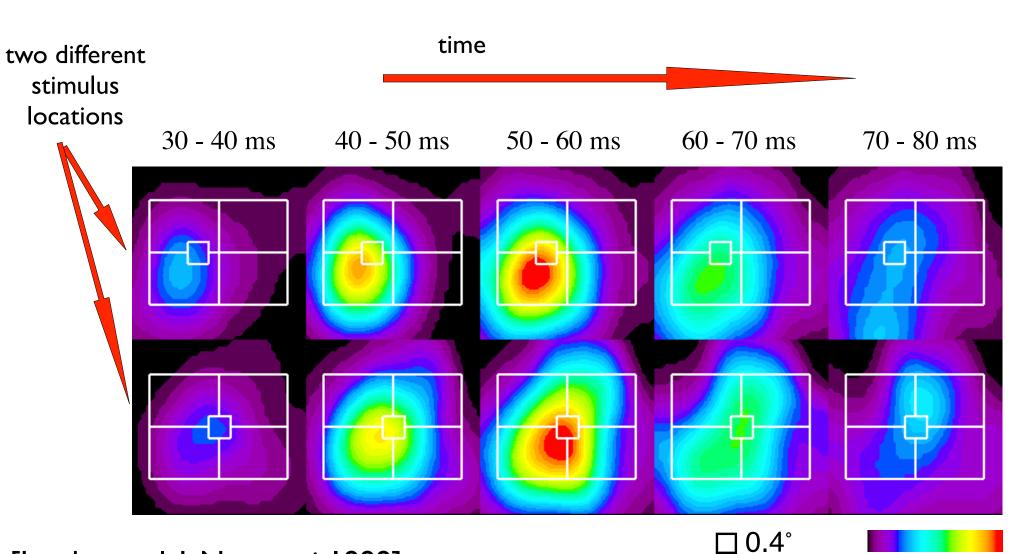
[Jancke et al, J. Neurosci 1999]

DPA



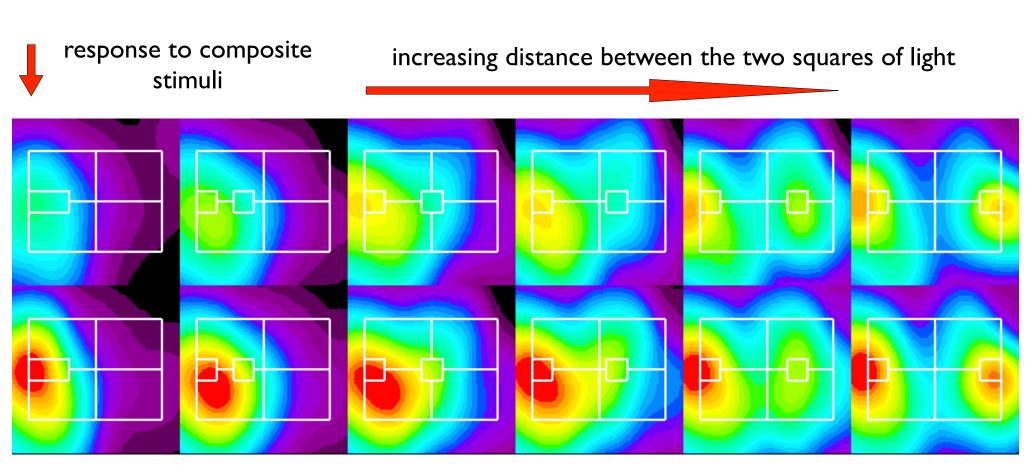
[Jancke et al, J. Neurosci 1999]

DPA: time course of activation



[Jancke et al, J. Neurosci 1999]

DPA: interaction

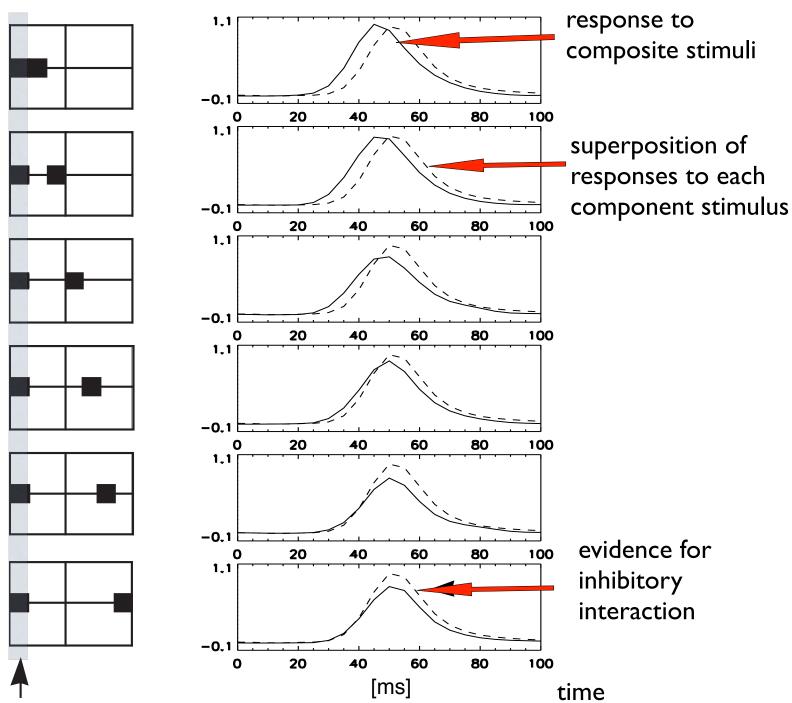


superposition of responses to each component stimulus

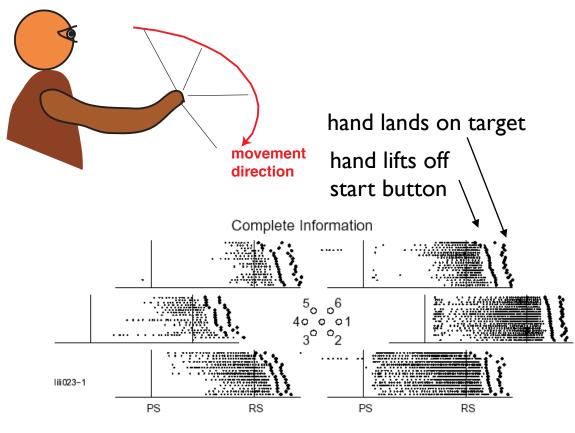
DPA: interaction

activation level in the DPA

at the location of the left component stimulus



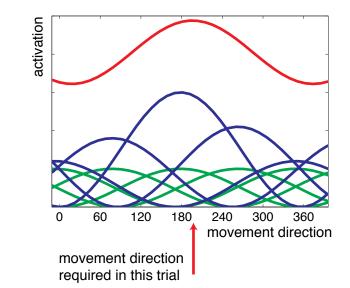
motor DPA



- motor: primary motor cortex
- determine tuning for each cell
- superpose these weighted by the current neural firing rate
- DPA defined over movement direction

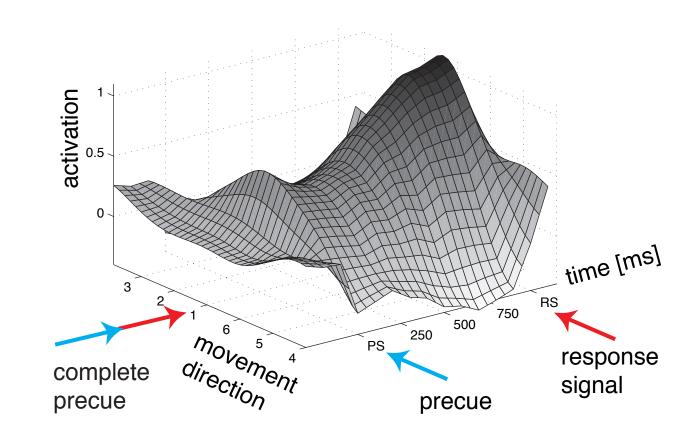
[Bastian et al, Europ J. Neurosci 2003]

Distribution of population activation = $\sum_{\text{neurons}} \text{tuning curve * current firing rate}$



Motor DPA

neurons
contribute their
entire tuning
curve =>
distributed
across field!



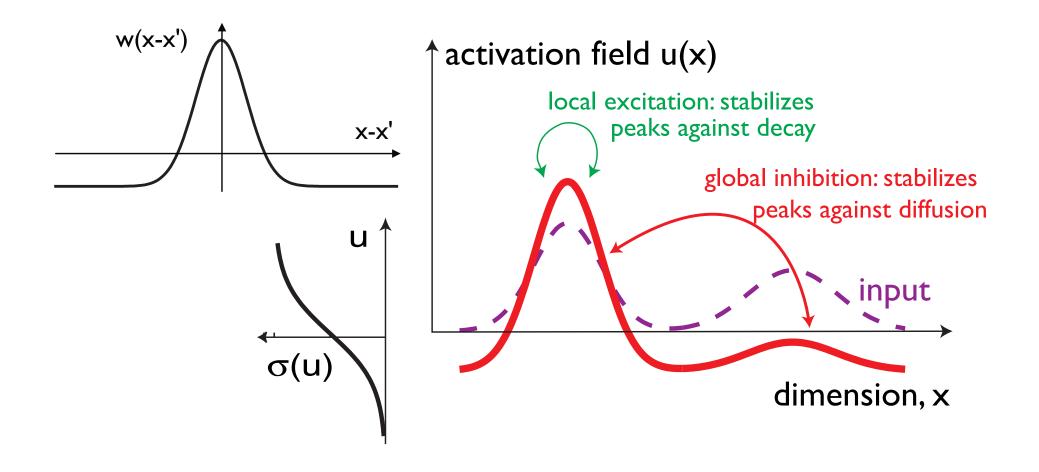
[Bastian et al, Europ J. Neurosci 2003]

Neural dynamics

Neural dynamics of fields

Peaks as stable states from intra-field interaction

= local excitation/global inhibition



OXFORD SERIES IN DEVELOPMENTAL COGNITIVE NEUROSCIENCE

dynamicfieldtheory.org

Dynamic Thinking

Gregor Schöner, John P. Spencer, and the DFT Research Group

OXFORD

=> simulation

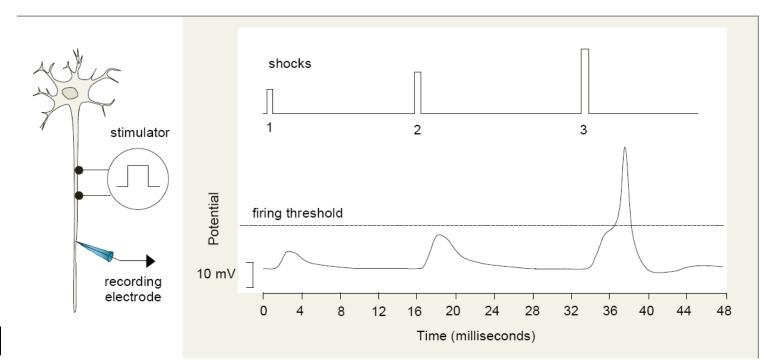
Attractors and their instabilities

- input driven solution
 (sub-threshold)
- self-stabilized solution (peak, supra-threshold)
- selection / selection instability
- working memory / memory instability
- boost-driven detection instability

reverse detection instability

Noise is critical near instabilities

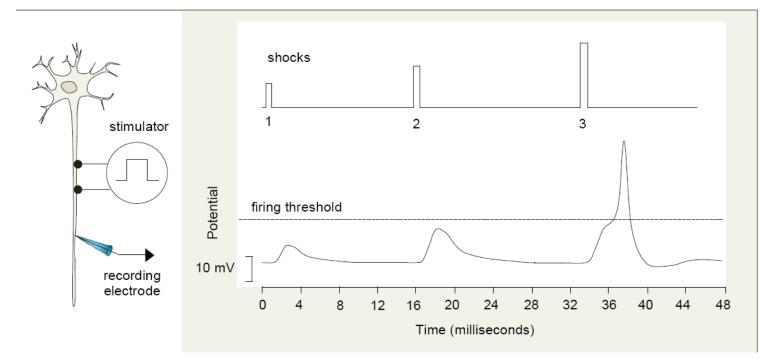
dynamical state variable: activation, u, as a real number that reflects the (population) membrane potential



[from: Tresilian, 2012]

 \blacksquare u(t) evolves as a dynamical system, characterized by a time scale, $\tau \approx 10 \mathrm{ms}$

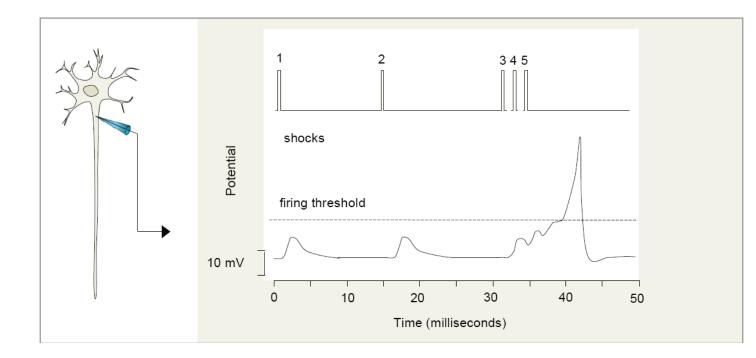
 $\tau \dot{u}(t) = -u(t) + h + \operatorname{input}(t)$



[from: Tresilian, 2012]

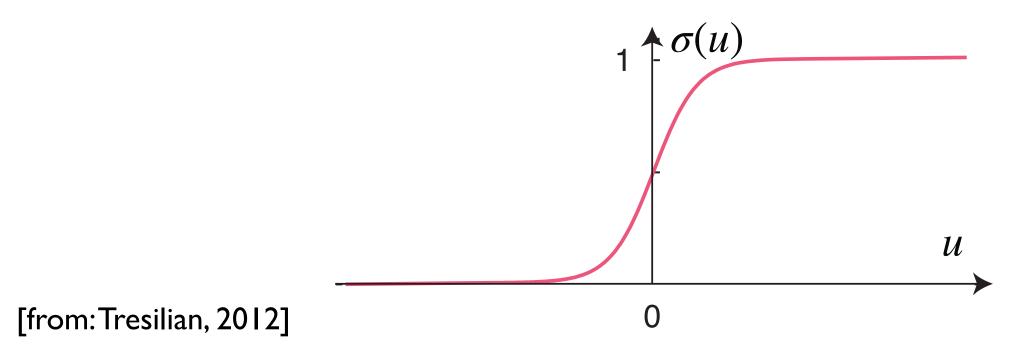
spiking when membrane potential exceeds threshold....

spike train is transmitted to downstream neurons

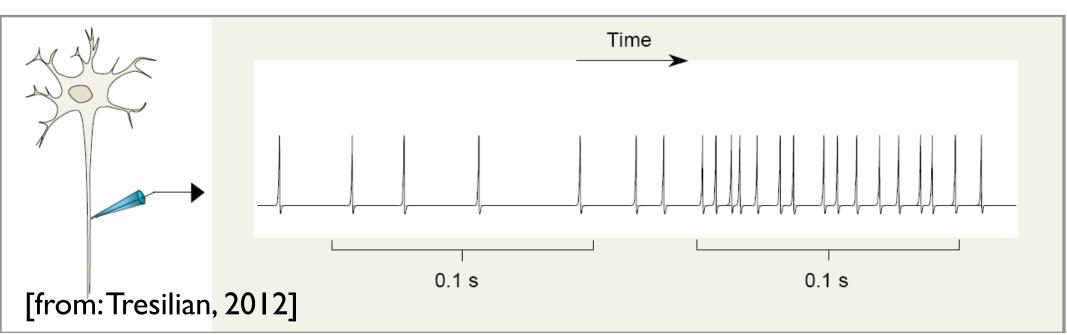


[from: Tresilian, 2012]

in neural dynamics, that mechanism is replaced by a statistical (population) description: threshold function



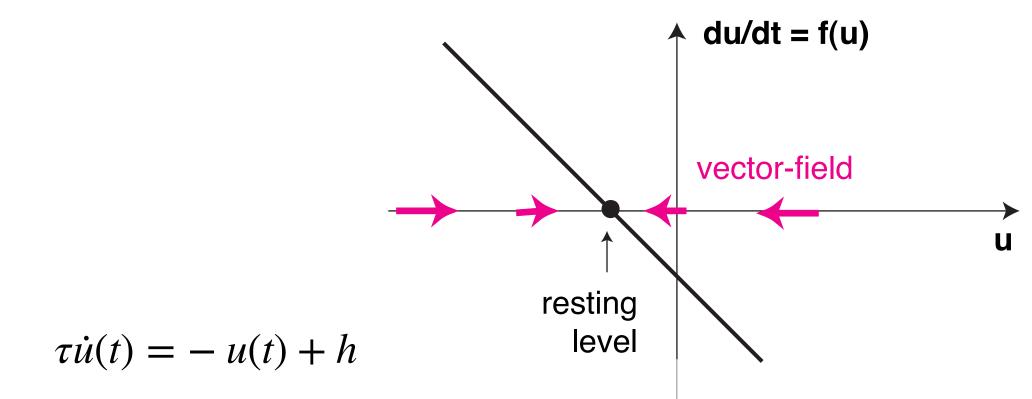
that captures different firing rates in a small population...



Neural dynamics

dynamical system: the present predicts the future

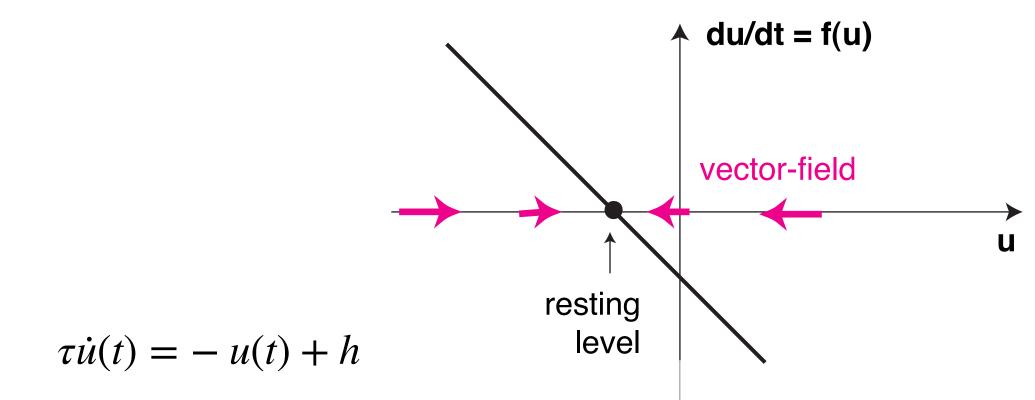
given a initial level of activation, u(0), the activation, u(t), at times t>0 is uniquely determined



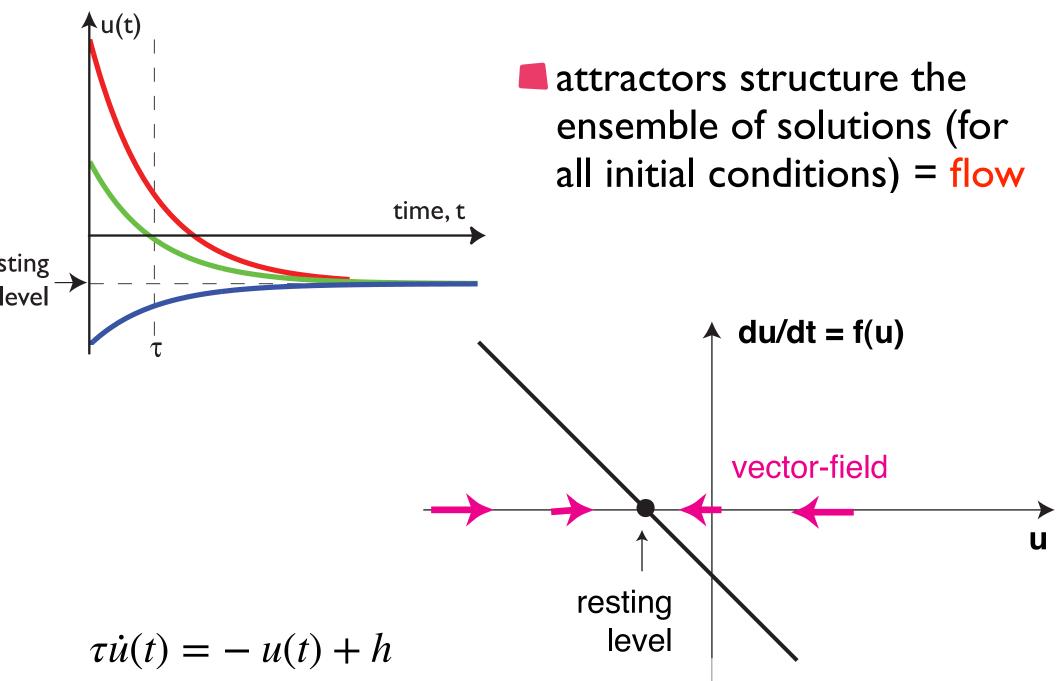
Neural dynamics

fixed point = constant solution (stationary state)

stable fixed point = attractor: nearby solutions converge to the fixed point



Neural dynamics



Neuronal dynamics

in neural dynamics, inputs are contributions to the rate of change

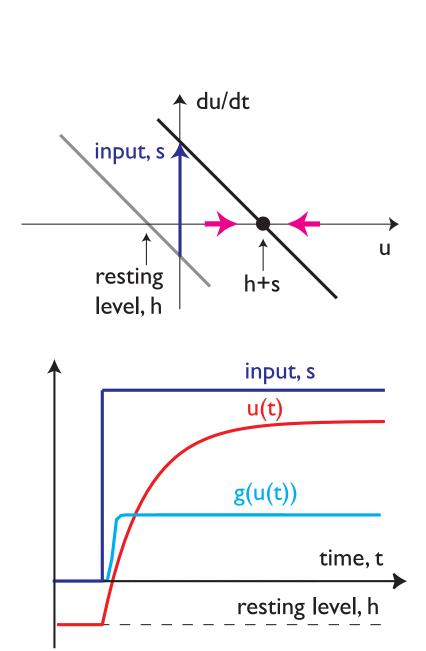
positive: excitatory

negative: inhibitory

=> shifts the attractor

=> activation tracks this shift due to stability

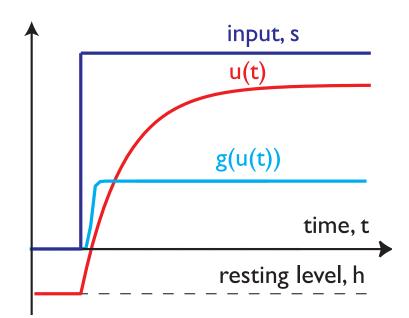
$$\tau \dot{u}(t) = -u(t) + h + s(t)$$



Neuronal dynamics

- what is transmitted is $\sigma(u(t))$
- (labelled g(t) in the book and in some figures)
- neural dynamics as a lowpass filter of time varying input
- = input-driven solution

$$\tau \dot{u}(t) = -u(t) + h + s(t)$$

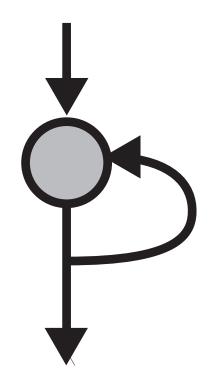


=> simulation

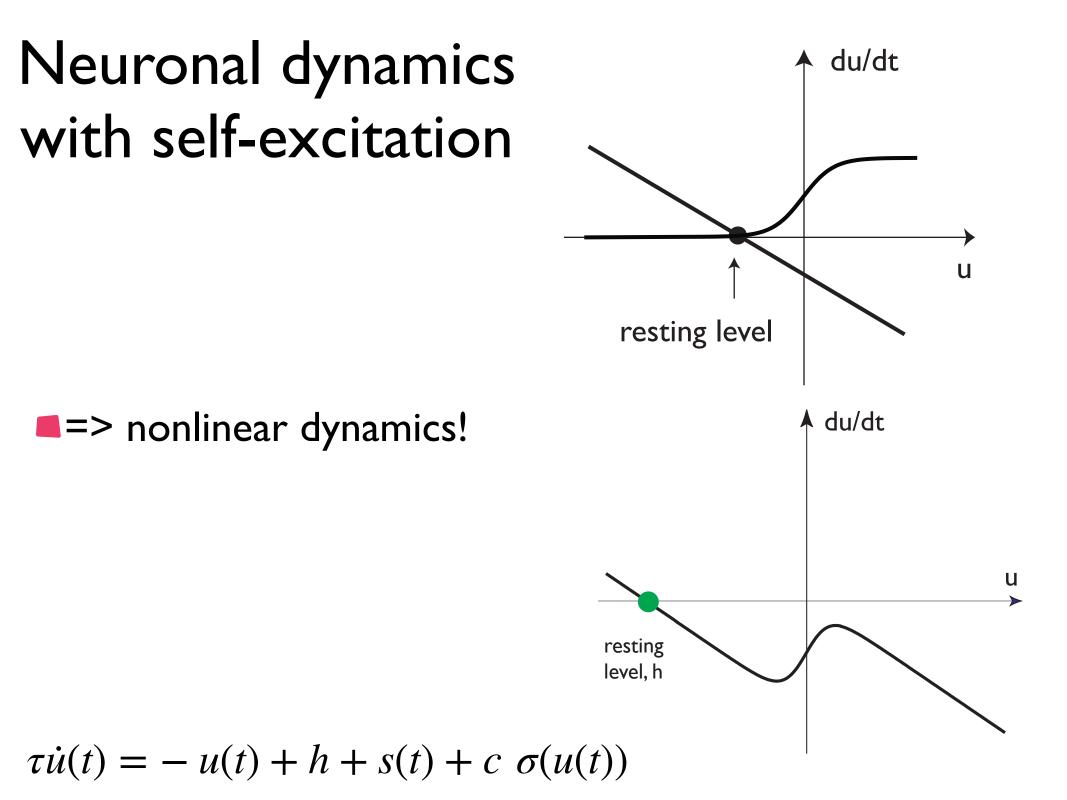
Neuronal dynamics with self-excitation

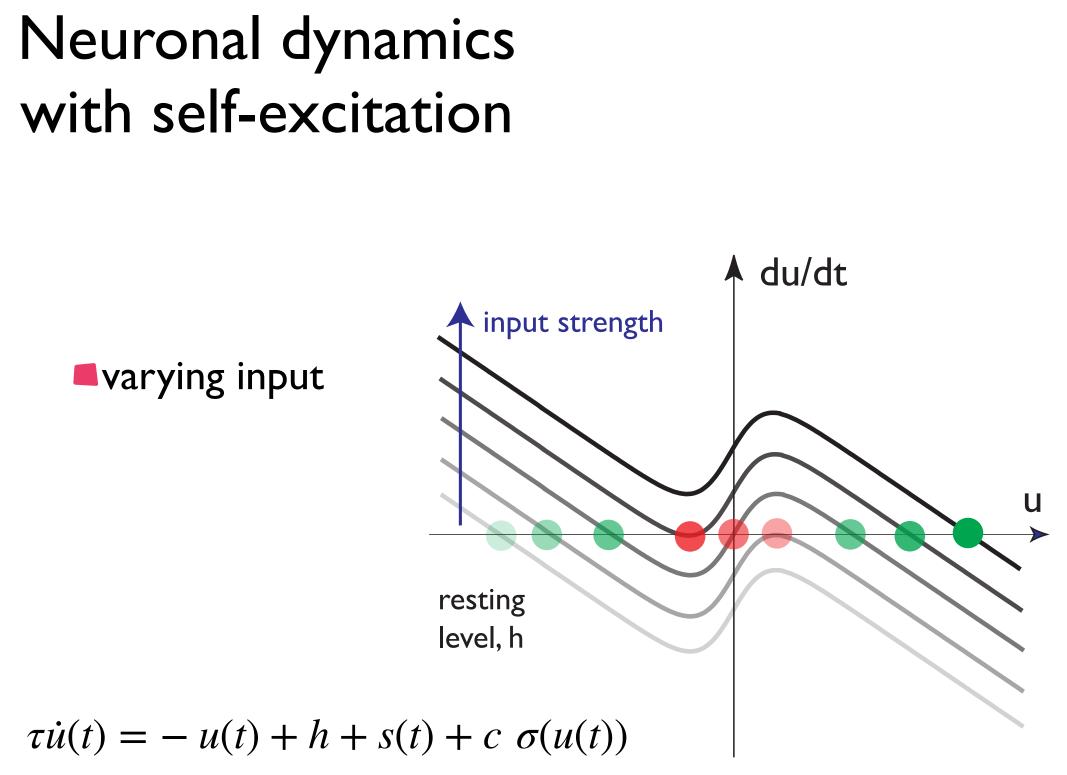
single activation variable with selfexcitation

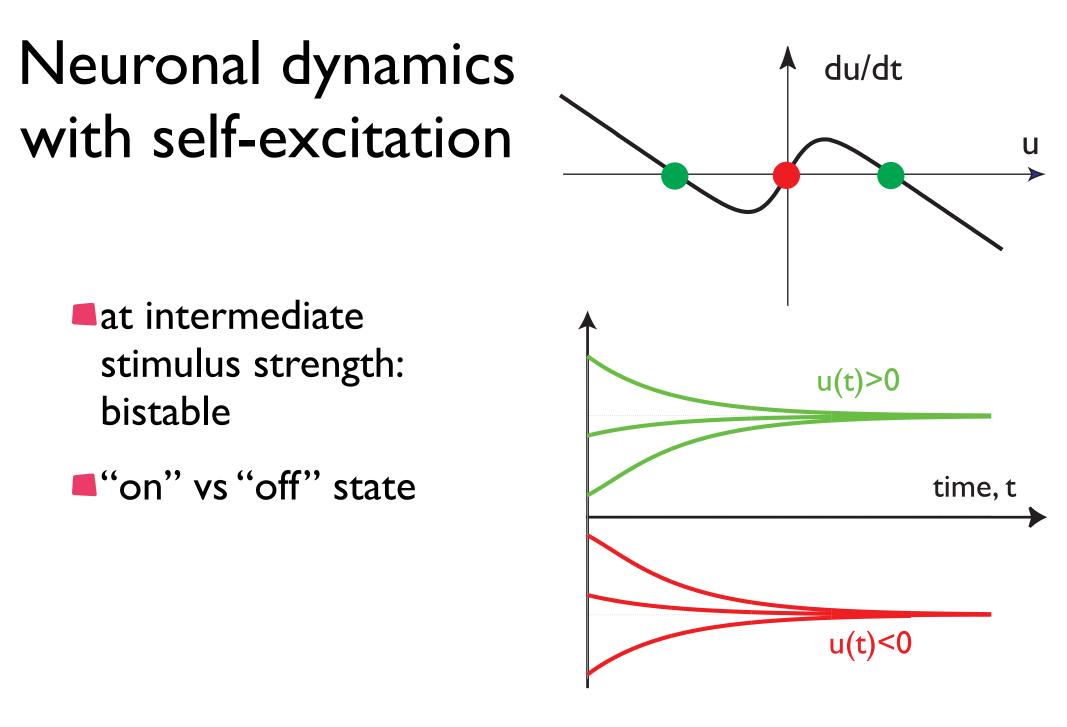
representing a small population with excitatory coupling



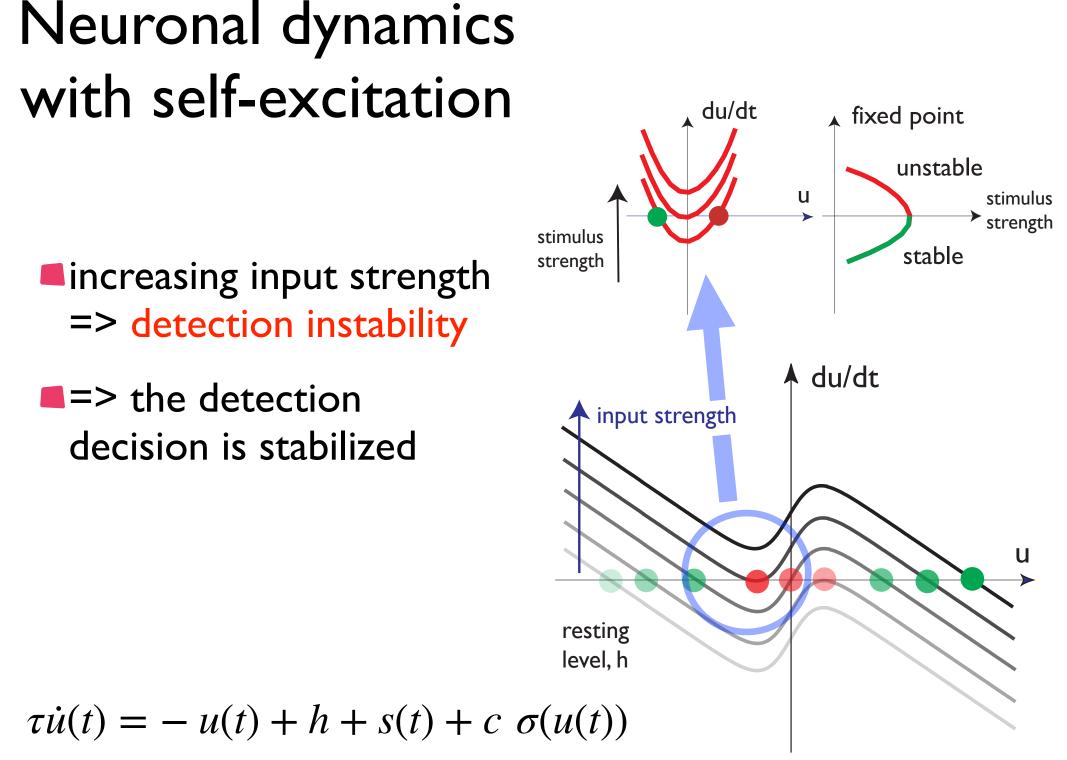
$$\tau \dot{u}(t) = -u(t) + h + s(t) + c \ \sigma(u(t))$$

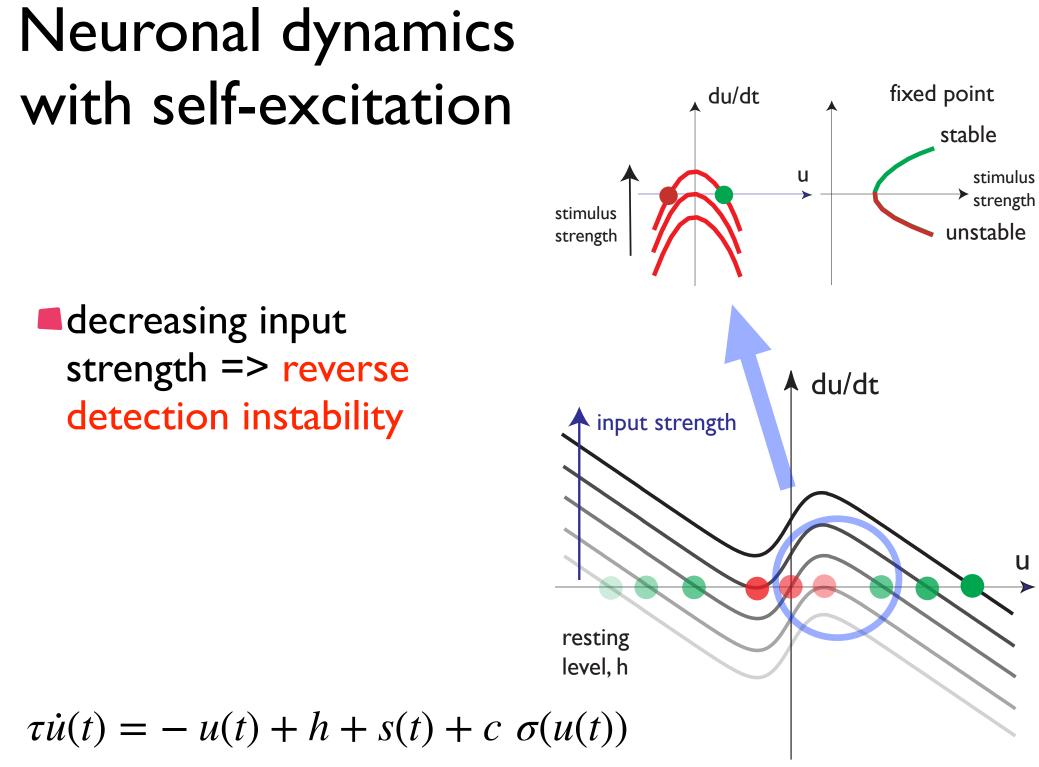






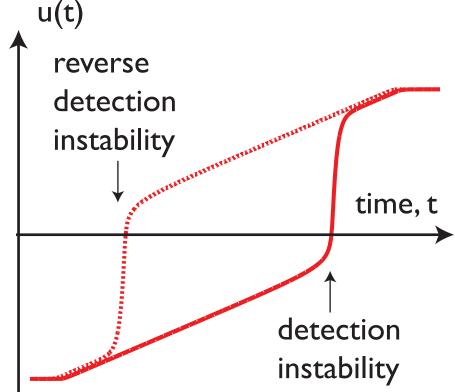
 $\tau \dot{u}(t) = -u(t) + h + s(t) + c \ \sigma(u(t))$





$$\tau \dot{u}(t) = -u(t) + h + s(t) + c \ \sigma(u(t))$$

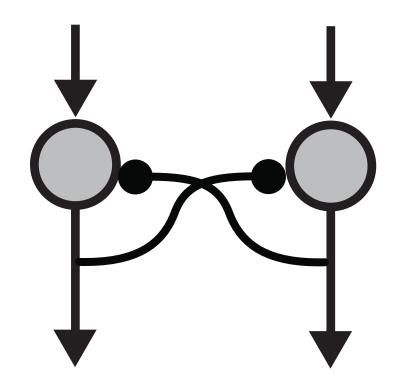
the detection and its reverse => create discrete events from time-continuous changes



Neuronal dynamics with self-excitation

=> simulation

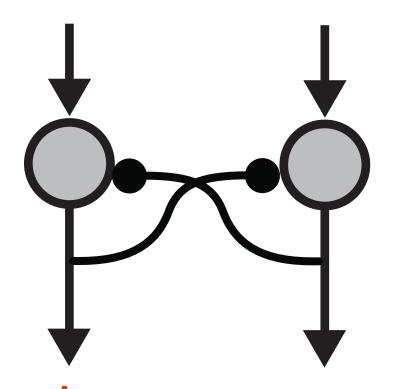
- two activation variables with reciprocal inhibitory coupling
- representing two small populations that are inhibitorily coupled



$$\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) - \sigma(u_2(t))$$

$$\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) - \sigma(u_1(t))$$

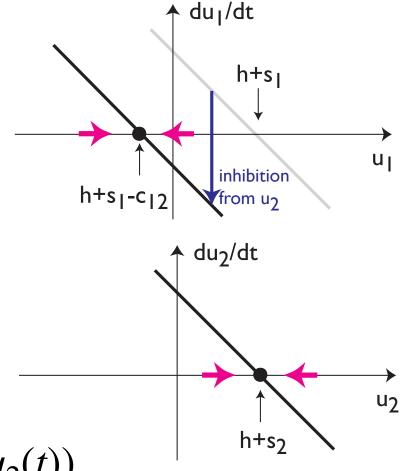
Coupling: the rate of change of one activation variable depends on the level of activation of the other activation variable



coupling

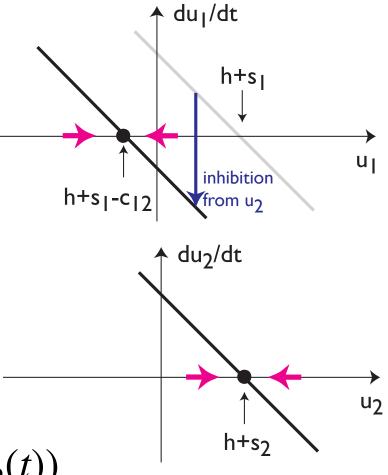
 $\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) - \sigma(u_2(t))$ $\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) - \sigma(u_1(t))$

- to visualize, assume that u₂ has been activated by input to a positive level
- => it inhibits u_1



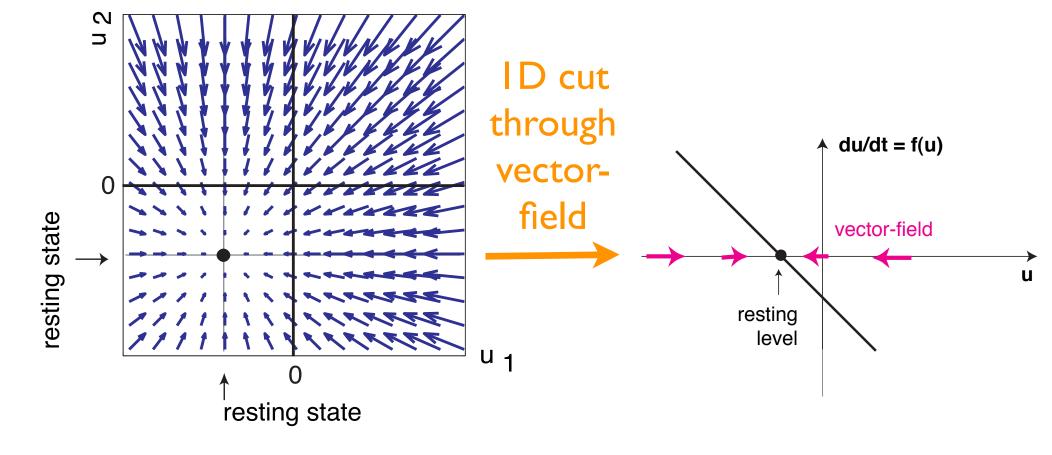
 $\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) - \sigma(u_2(t))$ $\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) - \sigma(u_1(t))$

- why would u_2 be positive before u_1 ?
- more input to u₂ (better "match") => faster increase
- input advantage <=> time advantage <=> competitive advantage

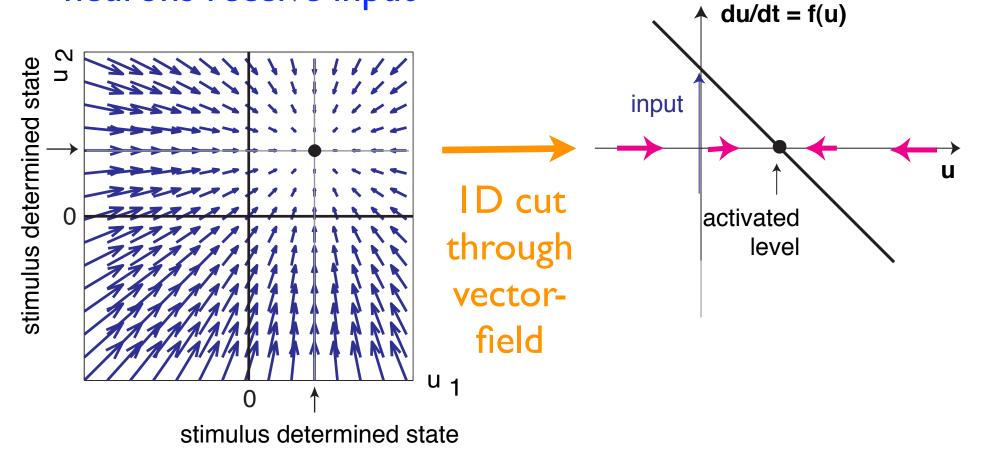


$$\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) - \sigma(u_2(t))$$

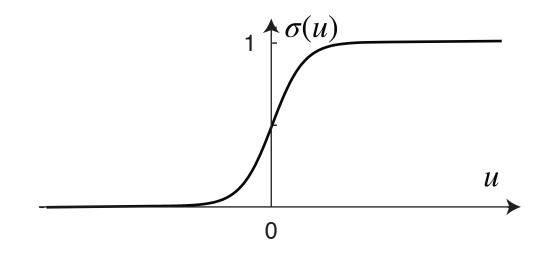
$$\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) - \sigma(u_1(t))$$



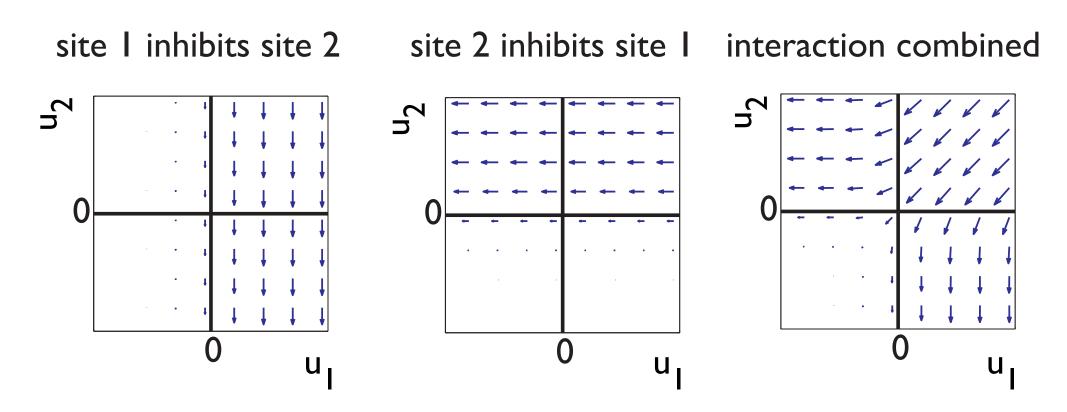
vector-field (without interaction) when both neurons receive input



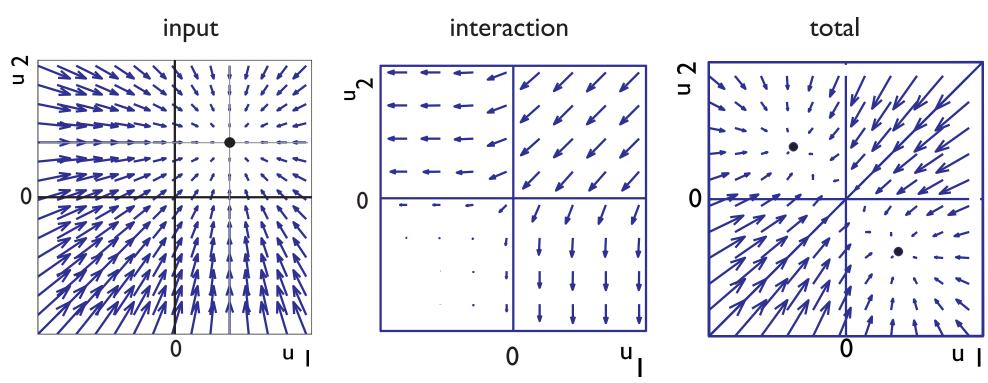
only activated neurons participate in interaction!

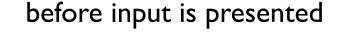


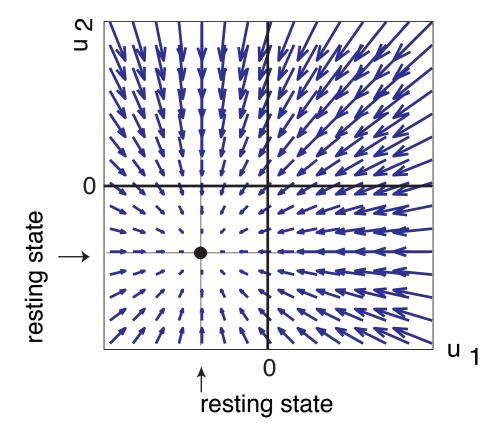
vector-field of mutual inhibition



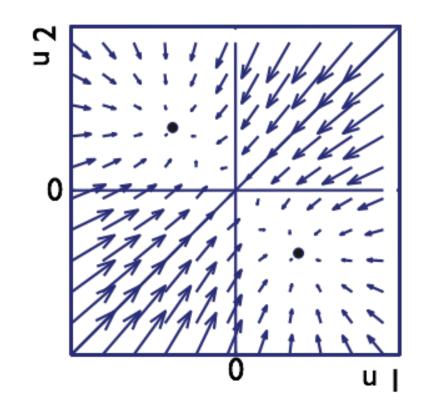
vector-field with strong mutual inhibition: bistable



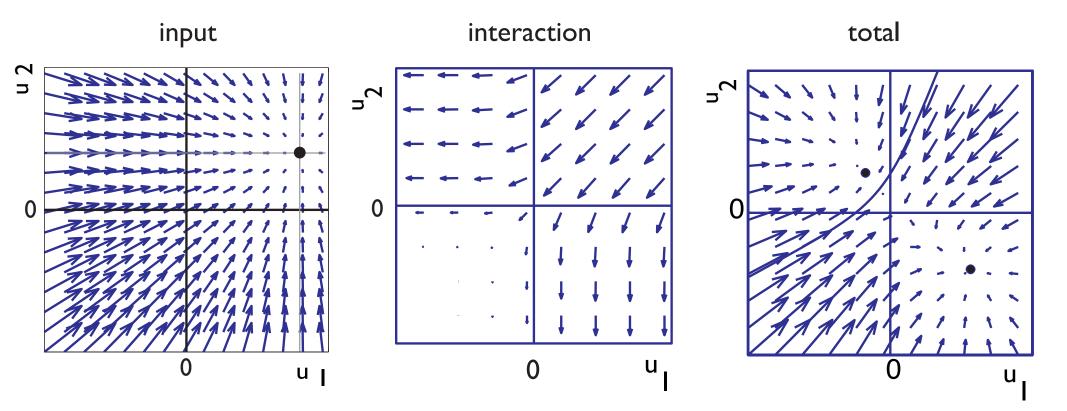




after input is presented



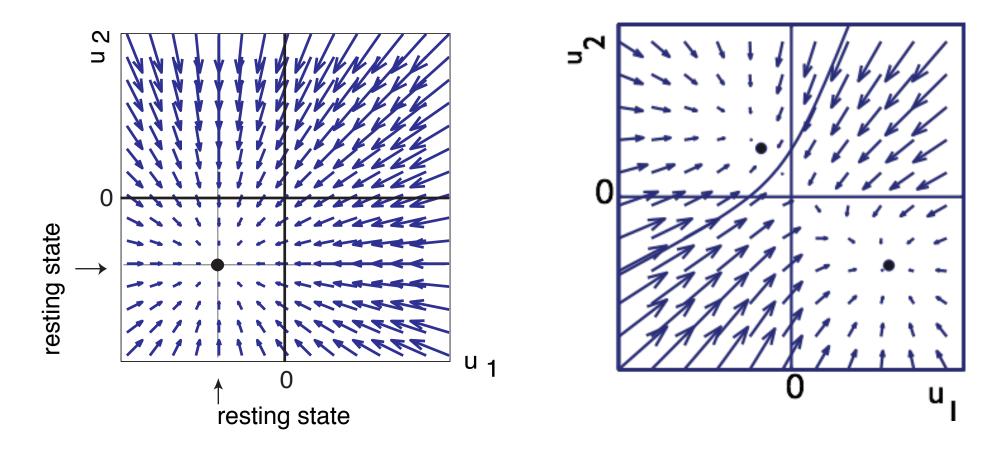
stronger input to $u_1 =>$ attractor with positive u_1 stronger, attractor with positive u_2 weaker => closer to instability



decision made at detection instability!

before input is presented

after input is presented



=> simulation

The neural dynamics of fields

- … the same underlying math
- coupling amoung continuously many activation variables
- Iocal excitatory coupling ("self-excitation")
- global inhibitory coupling ("mutual inhibition")

field vs. activation variables

