
Sequential processing 
in DFT
Gregor Schöner



����������	
���������������������������������
;=

��������	�� '�+	'�(��$�>��� ��#(!�$&	'�	"�'�!��$�"� '�(��������(�$'!	'�(��?%��	��"�,	-�$)(0$�')��

 	��!	���&�'�#(!�')�$�'	$5%��	��"$�,*-/,#-�$)(0�	 '�+�'��
�$'!�*�'�(�$�	'�
�##�!��'�&(��'$����')��'	$5%�

���"
�	 '�+�'��"�+�"$�	!�� ("(!/ (
�
�,
	!5�*"���@�"(0�$'�	 '�+�'�4�
	!5�!�
�@�)��)�$'�	 '�+�'�-%�

� '�+�'��(#�
�$ !�'���(
�$�, �! "�$-��$� (
�
�*��"��)'��$$�,
	!5�!�$)	
�$�@�)��)�!�	 '�+�'�-%��)��

	 '�+�'�����')��)��)/
����$�(�	"�'!	�$#(!�	'�(��#��"
�,�!���!)(�*�$-��$��('�!�&!�$��'�
%��("


7"�#'8

7!��)'8

7	*(+�8

7*�"(08

7�!���8

�	!��' ��#�!�� �

�*6� '/ ��'�!�


�(($'

7*"��87!�
8, -

,	- 7�!���8 7*"��87!�
8,*-

7"�#'8

7!��)'8

7	*(+�8

7*�"(08

7�!���8

�	!��' ��#�!�� �

�*6� '/ ��'�!�


7*"��87!�
8,
-

�(($'

7"�#'8

7!��)'8

7	*(+�8

7*�"(08

7�!���8

�	!��' ��#�!�� �

�*6� '/ ��'�!�


7*"��87!�
8,�-

7"�#'8

7!��)'8

7	*(+�8

7*�"(08

7�!���8

�	!��' ��#�!�� �

�*6� '/ ��'�!�


7*"��87!�
8,#-

�
(
(
$'

[Lipinski et al: JEP:LMC (2011)]
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how would 
sequences of 
processing 
steps arise 
autonomously 
from within 
the DFT 
architecture? 

Sequence generation



Sequence generation

in real life all actions consist of sequences of 
movements, perceptual and mental acts

often fixed by the logic of action  

often highly automated: routines

but also flexible: 

serial order: arbitrary sequences



Challenge for sequence 
generation in DFT

behaviors/representations are stable states

in a sequence there is a need to switch out 
of one behavior to the next. How to 
overcome stability?

answer: induce an instability 



search for objects 
of a given color in 
given serial order

1. blue

2. red

3. green

vehicle

target 1

target 2

obstacles

target 13

Illustration

[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]



yellow-red-green-blue-red

learn a serially ordered 
sequence from a single 
demonstration

yellow-red-green-blue-red

perform a serially ordered 
sequence with new timing

[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]

Implementation as an imitation task



each step entails a 
visual search for a 
target color

vehicle

target 1

target 2

obstacles

target 13

The problem of sequential processing
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the visual search takes 
a variable amount of 
time

need to represent the 
target color by a 
stable peak that resists 
distractors 

vehicle

target 1

target 2

obstacles

target 13

The problem of sequential processing



red a distractor red a target

[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]



excites the corresponding memory node, which, in its turn,
provides an excitatory input to the ordinal node which is to
be activated next. The active ordinal node also projects onto
a single intention field defined over the dimension of color.
Which color each node activates is learned, or memorized,
in the training phase through a fast Hebbian learning
mechanism. The intention field is reciprocally coupled with
a two-dimensional space-color field, in which the spatial
dimension samples the horizontal axis of the camera
image. The space-color field receives ridge-input localized
along the color dimension, but not along space, from the
intention field. It also receives a two-dimensional space-
color input from the visual array. Where visual input
overlaps with the ridge, a peak is formed, the spatial pro-
jection of which specifies the visual angle under which an
object of the color being sought is located.

The space-color field projects along the spatial dimen-
sion onto the dynamics of heading direction, creating an
attractor that steers the robot to the detected object. As that

object is approached, its image grows in the robot’s visual
array. The condition-of-satisfaction field (top-right on
Fig. 8) is pre-activated by input from the intention field and
is pushed through the detection instability when the object
of the color being sought looms sufficiently large. This
brings about the transition to the next step in the sequence
as described in Section 3.3.

Before an object that matches the current intention has
been found, no peak exists in the space-color field. The
heading direction does not receive input at that time from
the space-color field and the vehicle’s navigation dynamics
is dominated by obstacle avoidance, which is implemented
using a standard dynamic method (Bicho, Mallet, &
Schöner, 2000). This results in the roaming behavior that
helps the robot search for objects of the appropriate color.

During teaching, the visual input from the object shown
to the robot is boosted enough to induce a peak in the space-
color field. This peak projects activation backwards onto the
intention field, where a peak is induced at the location that

Fig. 8. The architecture for a sequential color-search task on a Khepera robot. An active node of the ordinal dynamics projects its activation onto an intention field,
defined over color dimension. The intention field is coupled to the space-color field, which also receives visual input from the robot’s camera. An activation peak
in the space-color field drives the navigation dynamics of the robot, setting an attractor for its heading direction. The condition-of-satisfaction field is also defined
over color dimension and is activated when the object of the currently active color takes up a large portion of the camera image.

Y. Sandamirskaya et al. / New Ideas in Psychology xxx (2013) 1–1814

Please cite this article in press as: Sandamirskaya, Y., et al., Using Dynamic Field Theory to extend the embodiment stance toward
higher cognition, New Ideas in Psychology (2013), http://dx.doi.org/10.1016/j.newideapsych.2013.01.002
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when the target 
color is found, 
suppress the target 
color => instability

switch to the next 
target color

vehicle

target 1

target 2

obstacles

target 13

Neural dynamics 
of sequential processing



“Condition of 
Satisfaction”

(CoS)

[Sandamirskaya, Schöner, 2010]

excites the corresponding memory node, which, in its turn,
provides an excitatory input to the ordinal node which is to
be activated next. The active ordinal node also projects onto
a single intention field defined over the dimension of color.
Which color each node activates is learned, or memorized,
in the training phase through a fast Hebbian learning
mechanism. The intention field is reciprocally coupled with
a two-dimensional space-color field, in which the spatial
dimension samples the horizontal axis of the camera
image. The space-color field receives ridge-input localized
along the color dimension, but not along space, from the
intention field. It also receives a two-dimensional space-
color input from the visual array. Where visual input
overlaps with the ridge, a peak is formed, the spatial pro-
jection of which specifies the visual angle under which an
object of the color being sought is located.

The space-color field projects along the spatial dimen-
sion onto the dynamics of heading direction, creating an
attractor that steers the robot to the detected object. As that

object is approached, its image grows in the robot’s visual
array. The condition-of-satisfaction field (top-right on
Fig. 8) is pre-activated by input from the intention field and
is pushed through the detection instability when the object
of the color being sought looms sufficiently large. This
brings about the transition to the next step in the sequence
as described in Section 3.3.

Before an object that matches the current intention has
been found, no peak exists in the space-color field. The
heading direction does not receive input at that time from
the space-color field and the vehicle’s navigation dynamics
is dominated by obstacle avoidance, which is implemented
using a standard dynamic method (Bicho, Mallet, &
Schöner, 2000). This results in the roaming behavior that
helps the robot search for objects of the appropriate color.

During teaching, the visual input from the object shown
to the robot is boosted enough to induce a peak in the space-
color field. This peak projects activation backwards onto the
intention field, where a peak is induced at the location that

Fig. 8. The architecture for a sequential color-search task on a Khepera robot. An active node of the ordinal dynamics projects its activation onto an intention field,
defined over color dimension. The intention field is coupled to the space-color field, which also receives visual input from the robot’s camera. An activation peak
in the space-color field drives the navigation dynamics of the robot, setting an attractor for its heading direction. The condition-of-satisfaction field is also defined
over color dimension and is activated when the object of the currently active color takes up a large portion of the camera image.

Y. Sandamirskaya et al. / New Ideas in Psychology xxx (2013) 1–1814

Please cite this article in press as: Sandamirskaya, Y., et al., Using Dynamic Field Theory to extend the embodiment stance toward
higher cognition, New Ideas in Psychology (2013), http://dx.doi.org/10.1016/j.newideapsych.2013.01.002
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2D feature-space fieldintentional state
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condition of satisfaction (CoS)ordinal stack

colorangle
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[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]
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[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]

Learning Production
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Figure 11: One run of the robotic demonstrations. A: Time-courses of activation of five ordinal nodes during
sequence learning and production. B: Time-course of activation in the action field. Positive activation in the
field encodes the color currently searched for. C: Time-course of activation in the condition of satisfaction
field. Arrows mark the times when condition of satisfaction signals were emitted (detection instabilities in
the field). D: The projection of the perceptual color-space field onto the spatial dimension (horizontal axis of
the image plane). The arrows mark times when the object of interest in each ordinal position first appeared
in the visual array of the robot. The “random search” behavior changed to “approach target” behavior at
these points.
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Generalization

intention
dimension x dimension y

neural state

motor-world-sensor state

condition
of satisfaction

prediction

[Sandamirskaya, Schöner, Neural Networks 2010]



Condition of satisfaction

intention
dimension x dimension y

neural state

motor-world-sensor state

condition
of satisfaction

prediction

[Sandamirskaya, Schöner, Neural Networks 2010]

detection instability in CoS as prediction and input 
match 

reverse detection in intention field

reverse detection in CoS field

=> active transient



Active transient of the CoS
12

3 4

vinh

uexc

41

2 3

41

2 3
set intention: blue => red

detection CoS:
 blue=> green 

41

2 3



Match/mismatch detection
the CoS mechanism is an instance of a more general 
class of neural dynamic mechanisms for match and 
mis-match detection

Atten Percept Psychophys

Target and source fields may have different dimension-
ality. When the source field has more dimensions than the
target field, sub-spaces may be marginalized by integration.
Neurally, this corresponds to a convergent or many-to-one
connection scheme where connections from all field sites
along the marginalized dimension in the source field con-
verge onto a single location in the target field. When the
source field has fewer dimensions, a sub-space of the target
field may receive constant input (ridge or slice input) corre-
sponding neurally to one-to-many or divergent connectivity.

Match and mismatch detection

A fundamental function of neural networks is to com-
pute matches between inputs and stored representations
(Rumelhart et al., 1986). In DFT, such matches engage
the mechanisms of the detection instability. Specifically,
a match detection field receives localized input from two
fields such that is goes through a detection instability only
if the localized inputs overlap sufficiently. The connection
kernels effectively set up the metric of the match operation.
Connection kernels can be designed to create a mismatch
detection field that goes through the detection instability
when peaks form in both input fields at non-overlapping
location (Fig. 4).

Sequences of neural processes

To generate meaningful cognitive or behavioral processes,
neural dynamic networks must transition from one state

to another. In neural dynamic thinking, meaningful neural
representations are stable activation states that persist in
the face of competition with other neural processes and
may impact on down-stream neural processes to ultimately
bring about behavior. The supra-threshold peaks of dynamic
neural fields are stable in this sense and enables them to
resist change. A prerequisite for any transition to a new state
is, therefore, that the pre-transition state becomes unstable.
DFT offers a general solution to this problem, the notion
of a “condition of satisfaction” (CoS) (Sandamirskaya &
Schöner, 2010). Any given stable neural representation
pre-activates an associated inhibitory neural representation,
its CoS. The pre-activation pattern reflects predictions of
the conditions under which the current state has been
brought to an end successfully. That is reflected in input
from the sensory surface or from other parts of a neural
architecture which matches the pattern of pre-activation.
Upon such match, the CoS system goes through a detection
instability. Its supra-threshold activation then inhibits the
stable neural representation, inducing a reverse detection
instability through which that state becomes deactivated.
The state’s CoS is then no longer pre-activated, leading to
a reverse detection instability in that field as well. At this
point, the previous state and its CoS have transitioned to a
sub-threshold state. Any other neural state that may have
been competing with this previous activation state may now
become activated through a detection instability, completing
the transition to a new stable activation state.

When a stable neural representation is directly about
motor behavior, predictions about its completion are

Mismatch Detection 

peak detector

no match
response

match
response

Attended Feature

feature spacefeature space

Expected Feature

scene input memory input

feature is
specified

CoSCoD

Intention

peak detector peak detector

feature space fe
at

ur
es

Fig. 4 Match detection sub-network. Multidimensional feature values from two different sources are compared in parallel along each feature
dimension. The mismatch detection field and connected peak detector nodes signals a mismatch if the attended, the expected, and the mismatch
detection fields all carry a peak. A match is signaled if both the attended and the expected field carry peaks, but the mismatch detection field does
not. A single mismatch is sufficient to activate the CoD. The CoS is activated only when a match is detected along each of the specified dimensions

(which develop 
older ideas by 
Grossberg and 
colleagues)

[Grieben et al, PP&A 2020]



Match/mismatch detection

see e.g. Chapter 6 by Johnson/Simmering of 
the DFT primer)

=> talks by Mathis Richter and Raul Grieben 
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The multi-dimensional DFT model
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[Sandamirskaya, 2011]

Generation of a grasping sequence



EB11 EB12 EB1n

EB11

EB15

EB1m

EB12 EB13

EB16

EB18
EB17

EB14

EBp1

EBp5

EBpq

EBp2 EBp3

EBp6

EBp8
EBp7

EBp4

Level 0

Level 1

Level p

Hierarchically organized sequences of EBs

hierarchy

[Duran, Sandamirskaya, 2014]



Sequence generation

sequence generation is critical to all DFT 
accounts for higher cognitive processes: 

=> Raul Grieben on visual search 

=> Mathis Richter and Daniel Sabinasz on 
on relational concepts 

=> Jan Tekülve’s tutorial on sequence 
generation and intentionality 


