Neural Process Models for Intentional States

Jan Tekülve

Institute for Neural Computation Ruhr-Universität Bochum

04.09.2020

Motivation

Spectrums of Dynamic Field Theory

Models capturing psycho-physical data

[Thelen et al., 2001]

Motivation

Spectrums of Dynamic Field Theory

- Models capturing psycho-physical data
- Models capturing behavioral competences

Motivation

Spectrums of Dynamic Field Theory

- Models capturing psycho-physical data
- Models capturing behavioral competences
- Models capturing intentional agents?

The capacity of the nervous system to generate mental states that are "about" things in the world.

"Things in the world" include the agent's body and its mental states

- "Things in the world" include the agent's body and its mental states
- How may intentional states emerge from neural processes?

- "Things in the world" include the agent's body and its mental states
- How may intentional states emerge from neural processes?
- How are intentional states stabilized in time?

- "Things in the world" include the agent's body and its mental states
- ▶ How may intentional states emerge from neural processes?
- How are intentional states stabilized in time?
- Under which circumstances are intentional states destabilized?

Intentional States

Defined through a content and a psychological mode

World-to-Mind Direction of Fit

- > Picking a *red flower* in front of me
- > Pick a *red flower* later in the park
- ▶ Wanting a *red flower*

Mind-to-World Direction of Fit

- ► Seeing a *red flower* in front of me
- ▶ Recall a *red flower* growing in the park
- ► *Red flowers* have a green stem

(Intention-in-Action) (Prior Intention) (Desire)

(Perception) (Memory) (Belief)

content

[Intentionality: An essay in the philosophy of mind, Searle, 1983]

Directions of Fit: Mind-to-World

Example: Perception

Directions of Fit: Mind-to-World

Example: Perception

Directions of Fit: World-to-Mind

Example: Intention-in-Action

Directions of Fit: World-to-Mind

Example: Intention-in-Action

Directions of Fit: World-to-Mind

Example: Intention-in-Action

Condition of Satisfaction: Is the fit achieved?

A neural Process Model

- Detects CoS based on sensor information
- Represents action initiation and termination
- Drives motor behavior

[Sandamirskaya and Schöner, 2010]

Model

A simple Painting Scenario

- Toy scenario includes six different psychological modes
- Behavior emerges from autonomous transitions between intentional states
- Stabilized intentional states make up experience
- Experience allows the formation of categorical beliefs

[Tekülve and Schöner, 2019]

Model

Mind-To-World States

Perception

- See Objects (Position, Height, Color)
- Observe Color Change
- Sense Position, Arm, Paint-Device Status

Memory

Objects in World Space

Belief

Paint Rules (Coat Color + Canvas Color = Result Color)

Model

World-To-Mind States

Intention-in-Action

- ► Move in 1-D Space
- Reach for Objects
- ▶ Pick-Up/Dispense Color
- Invoke certain Mind-to-World States

Prior Intention

- Locate an Object
- Collect a certain Coat
- Apply Coat on a certain Canvas
- Desire
 - Create a certain Color

Architecture Overview

Sensor/Motor Surface

From Sensor to Field

Process Model: Perception

No Perception

retinal space

Perception

Memory Buildup

Example: Goal-Directed Driving

Example: Goal-Directed Driving

Example: Goal-Directed Driving

Example: Goal-Directed Driving

Example: Goal-Directed Driving

Collecting Sequence

Autonomous Learning

Requirements:

- Autonomous action
- Meaningful experience

Autonomous Learning

► Requirements:

- Autonomous action
- Meaningful experience

Problems:

- Content abstraction
- Temporal organization

► Learning from a single episode

Learning from a single episode

Coat

Learning from a single episode

Learning from a single episode

Learning from a single episode

- Learning from a single episode
- Cued activation to guide behavior

- Learning from a single episode
- Cued activation to guide behavior

Result

- Learning from a single episode
- Cued activation to guide behavior

- Learning from a single episode
- Cued activation to guide behavior

- Learning from a single episode
- Cued activation to guide behavior
- Rejection in the face of conflicting evidence

- Learning from a single episode
- Cued activation to guide behavior
- Rejection in the face of conflicting evidence

- ► Learning from a single episode
- Cued activation to guide behavior
- Rejection in the face of conflicting evidence

- Learning from a single episode
- Cued activation to guide behavior
- Rejection in the face of conflicting evidence

- Learning from a single episode
- Cued activation to guide behavior
- Rejection in the face of conflicting evidence

Belief Recall and Rejection

Conclusion

- From sensorimotor surface to abstract representations in continuous time
- Process models of different psychological modes
- Models reveal necessary infrastructure to stabilize learning

Conclusion

Outlook

Generalizing Beliefs

Desire Dynamics

[Aerdker, Feng, Schöner, 2020]

Thank you for your attention!

Interested in Dynamic Field Modeling? Try our simulation framework cedar!

<u>cedar.ini.rub.de</u>

Pre-built apps for: Linux, Mac OS and Windows

Bibliography

John R Searle, S Willis, et al. Intentionality: An essay in the philosophy of mind. Cambridge university press, 1983.

Jan Tekülve and Gregor Schöner. Neural dynamic concepts for intentional systems. In 41th Annual Conference of the Cognitive Science Society (CogSci 2019), 2019.