

Dynamic Field Theory: embodied cognition

Gregor Schöner
Institute for Neural Computation (INI)
Ruhr-University Bochum, Germany
dynamicfieldtheory.org
gregor.schoener@rub.de

Neuro-physics

- $\tau \dot{u} = -u + h + \text{inputs}$ ~integrate and fire...
- spiking mechanism replaced by the sigmoid threshold function in population picture

attractor dynamics

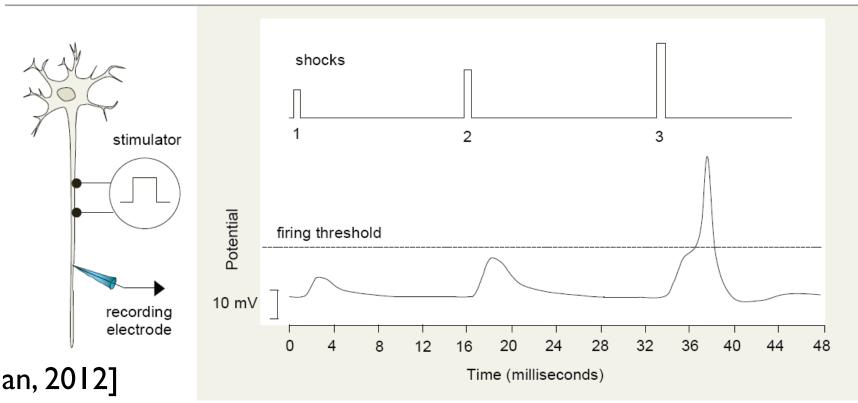
- -u term is the source of the stability of neural states
- this dynamics as a low-pass filter of input

Neuro-physics

membrane potential, u(t), evolves as a dynamical system

$$\tau \dot{u}(t) = -u(t) + h + \text{input}(t)$$

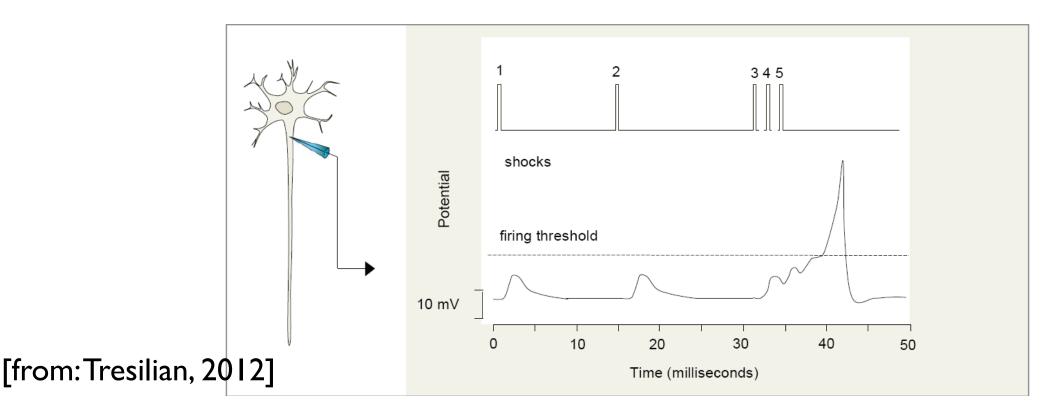
 \blacksquare time scale, $\tau \approx 10 \text{ ms}$



[from: Tresilian, 2012]

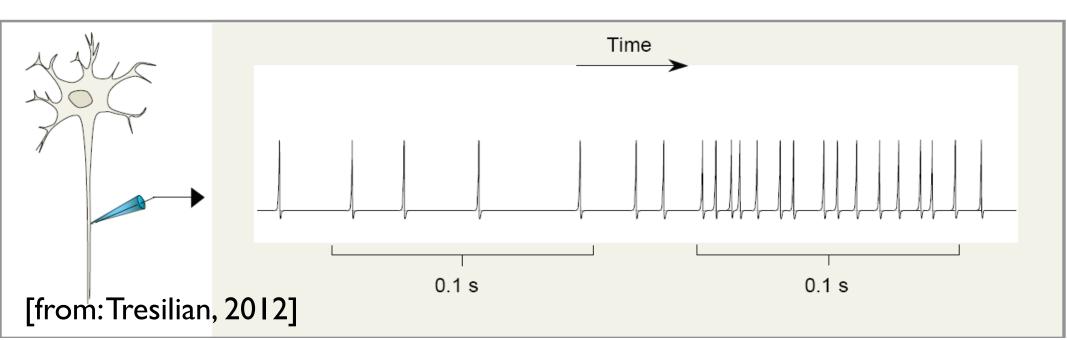
Neuro-physics

spikes when membrane potential exceeds threshold.... and only spikes are transmitted to downstream neurons

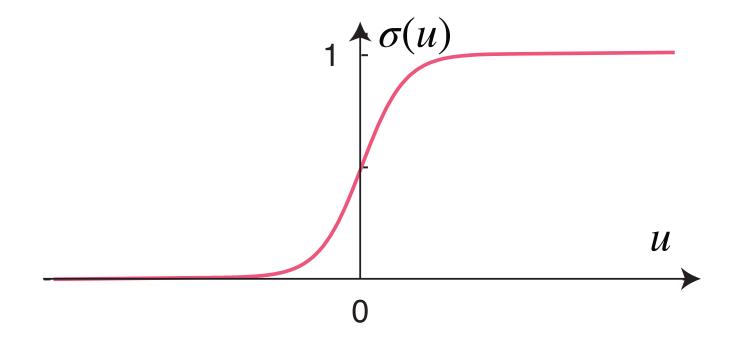


Neuro-physics

firing rate reflects level of input...

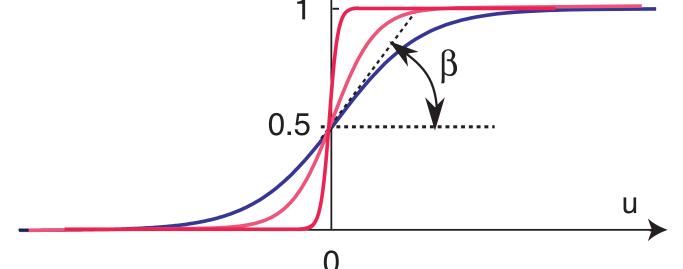


- spiking mechanism replaced by a threshold function
- that captures the effective transmission of spikes in populations

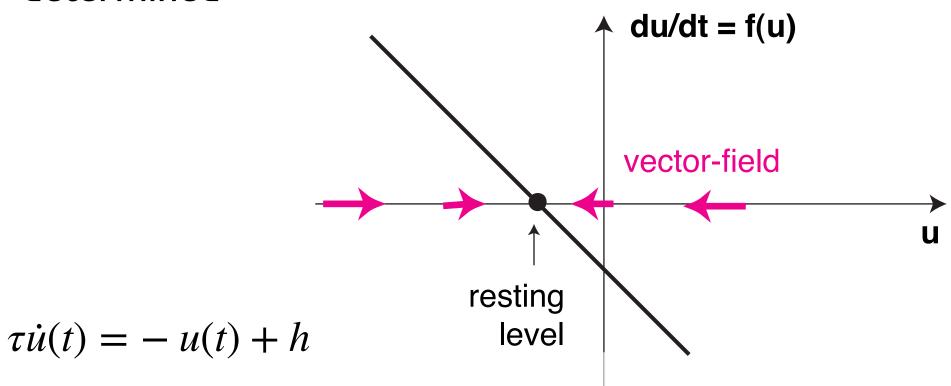


- activation as a real number with threshold at zero, abstracting from biophysical details ~ population level membrane potential
- low levels of activation: not transmitted to downstream systems (including motor systems)

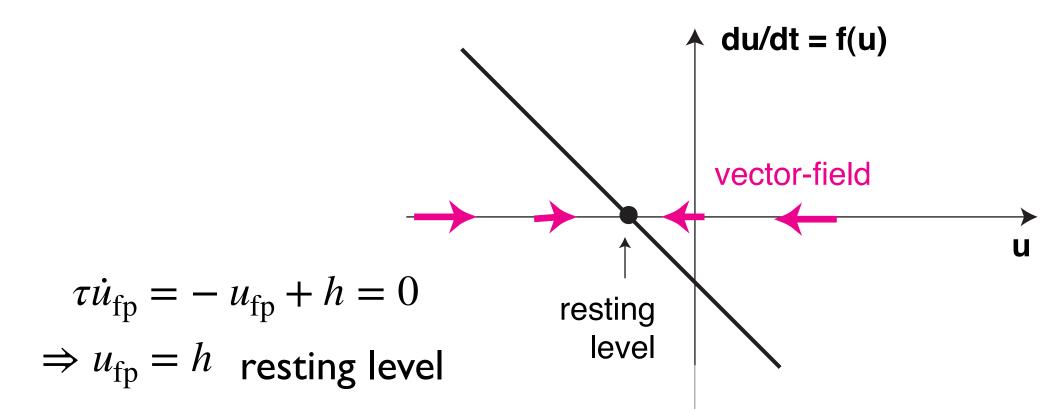
high levels of activation: transmitted to downstream systems
A q(u)

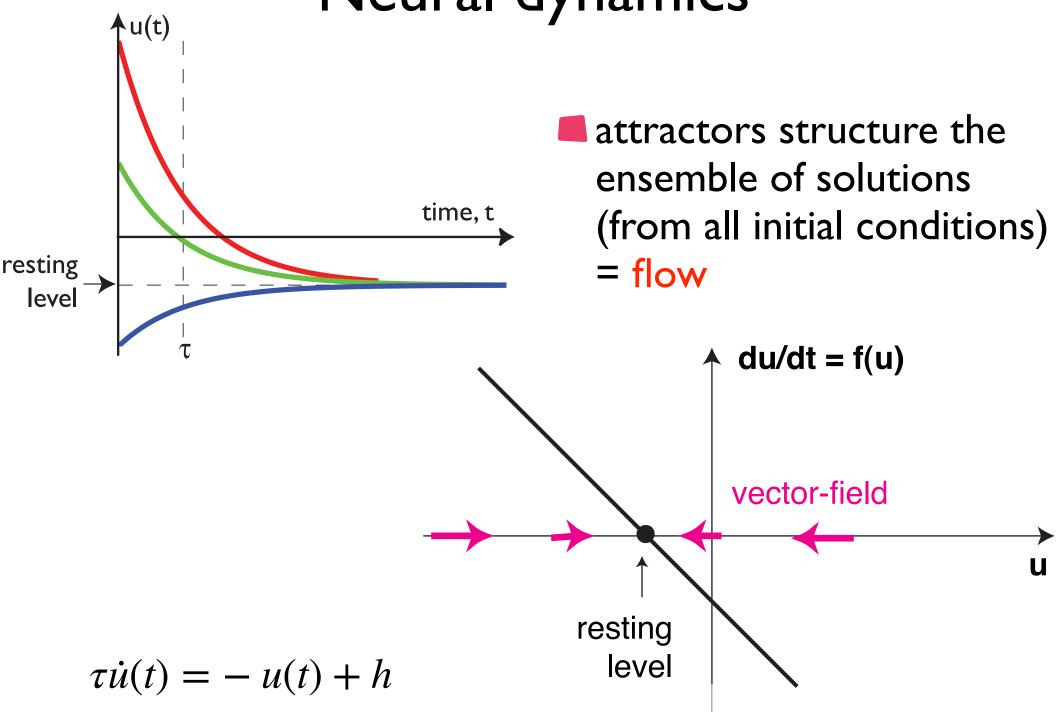


- dynamical system: the present state predicts the future evolution of the state
- => given an initial level of activation, u(0), the time course of activation, u(t), for t>0 is uniquely determined



- fixed point = constant solution (stationary state)
- stable fixed point = attractor: nearby solutions converge to the fixed point



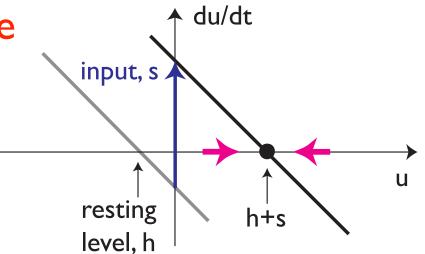


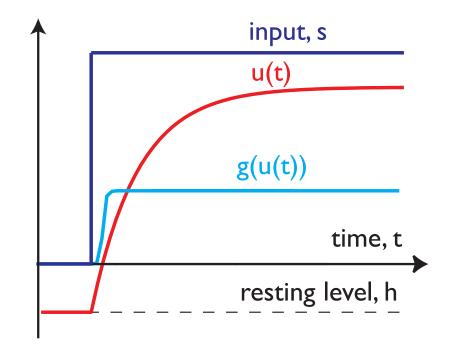
inputs are contributions to the rate of change of activation

- positive: excitatory
- negative: inhibitory

$$\tau \dot{u}(t) = -u(t) + h + s(t)$$

- => input shifts the attractor
- => activation tracks this shift due to stability

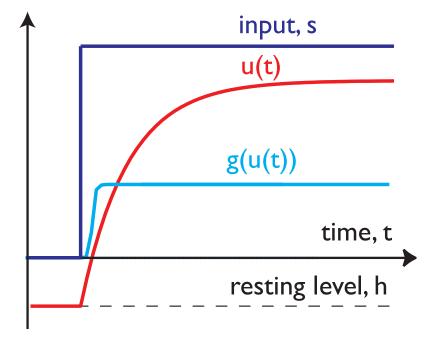




- Itransmitted to down-stream neurons/motor systems: $\sigma(u(t))$
- we use $\sigma(u)$ and g(u) interchangeably in some papers/the DFT book]

=> the "input-driven solution" of the neural dynamics lowpass filters time varying input

$$\tau \dot{u}(t) = -u(t) + h + s(t)$$



=> simulation

dynamicfieldtheory.org

OXFORD SERIES IN DEVELOPMENTAL COGNITIVE NEUROSCIENCE

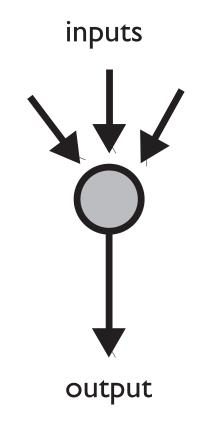
Dynamic Thinking

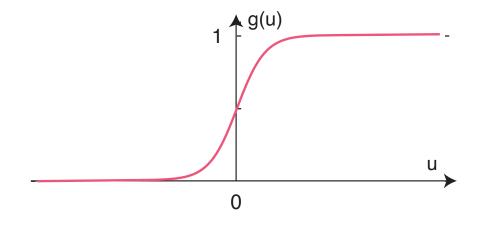
A PRIMER ON DYNAMIC FIELD THEORY

Gregor Schöner, John P. Spencer, and the DFT Research Group

Connectionism: similar abstraction

- neurons sum input activations and pass them through a sigmoidal threshold function
- some connectionist models neglect the low-pass filtering/ time delaying properties of the neural membrane dynamics



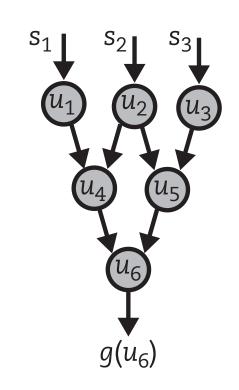


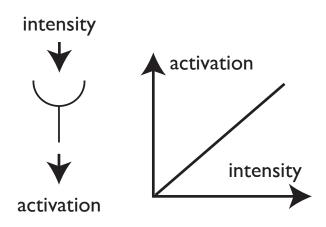
output =
$$g\left(\sum (inputs)\right)$$

- defined by pattern of forward connectivity to sensory/motor surfaces
 - as described by tuning curves/receptive fields
 - analogous to forward NN ...
- neglect sampling by discrete neurons => neural fields
- notion of feature spaces that are represented in neural fields

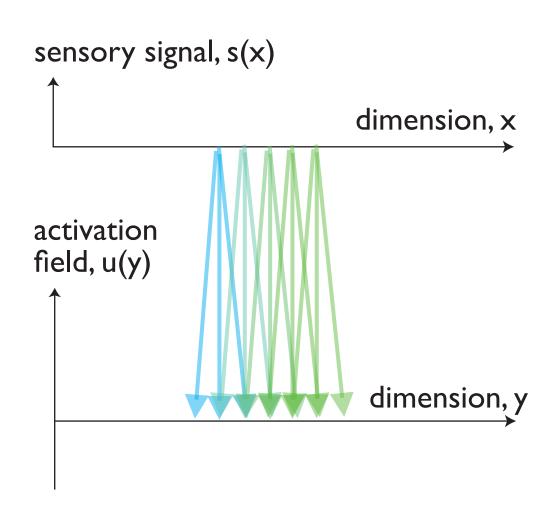
Neural dynamic networks

- ■in networks neural activation variables, the forward connectivity determines "what a neuron stands for"
- = space code (or labelled line code)
- ■in rate code, the activation level "stands for" something, e.g. a sensed intensity
- generic neural networks combine both codes

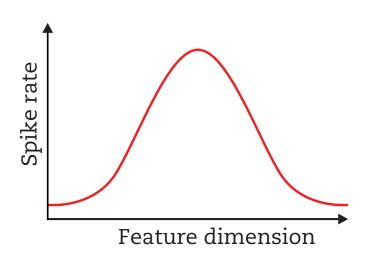


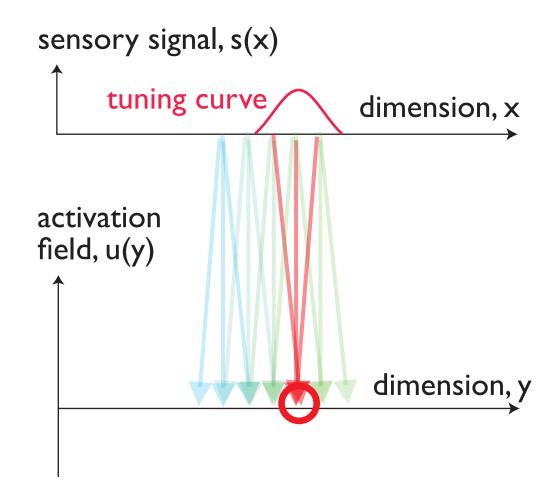


forward connectivity from the sensory surface extracts perceptual feature dimension

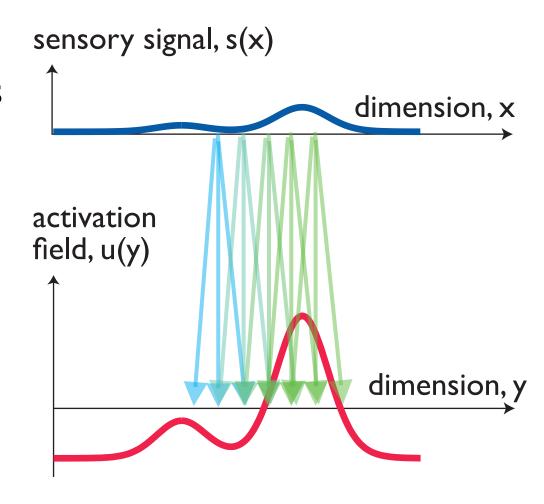


forward connectivity predicts/models tuning curves

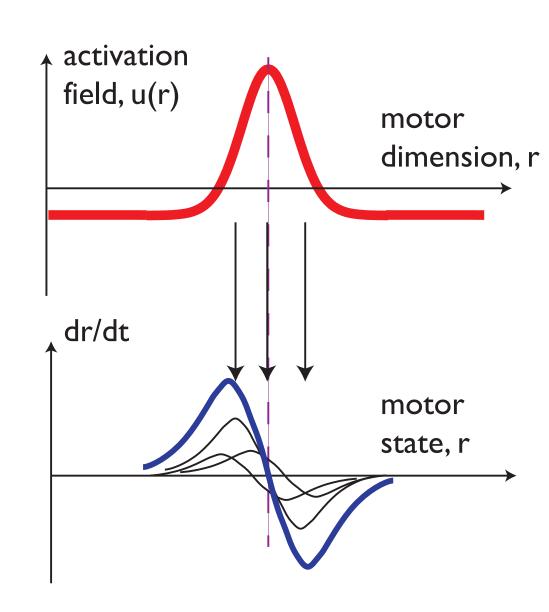




- forward connectivity thus generates a map from sensory surface to feature dimension
- neglect the sampling by individual neurons => activation fields



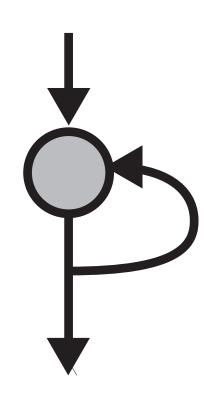
- analogous notion for forward connectivity to motor surfaces...
- (actually involves behavioral dynamics)
 - (e.g., through neural oscillators and peripheral reflex loops)



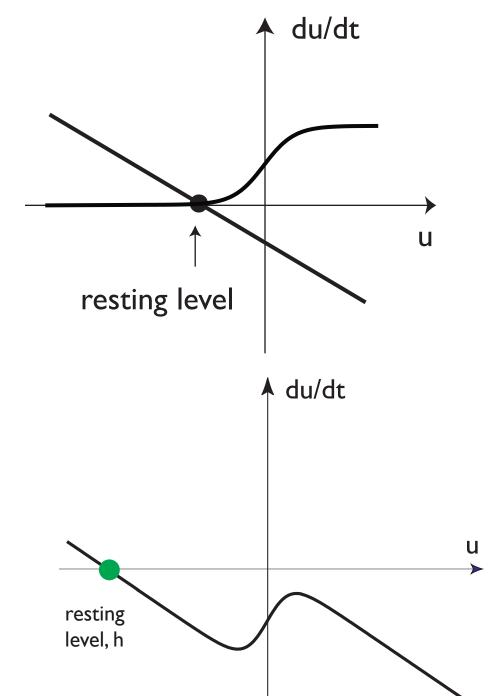
Neural dynamics: state

- neural activation that is not entirely determined by input...but depends on the activation state
- this originates from recurrent connectivity ("interaction" or "coupling") that is organized to keep activation states stable
- detection instability
- selection/competition
- => dynamic regimes/instabilities

- single activation variable with selfexcitation
- (representing a small population with excitatory coupling)



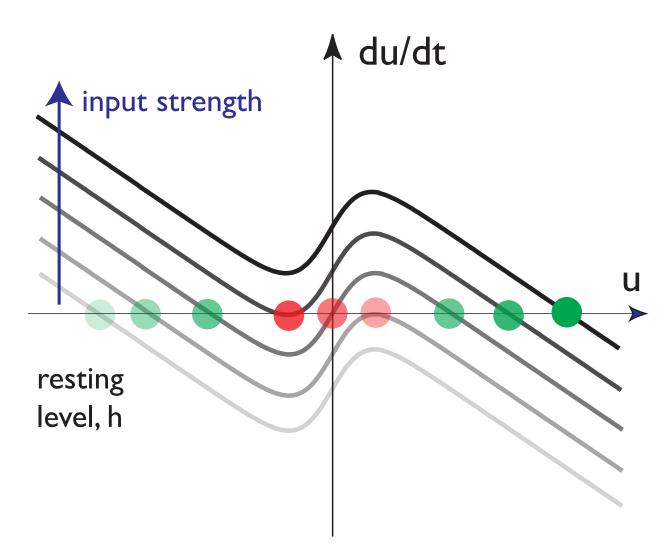
$$\tau \dot{u}(t) = -u(t) + h + s(t) + c \ \sigma(u(t))$$



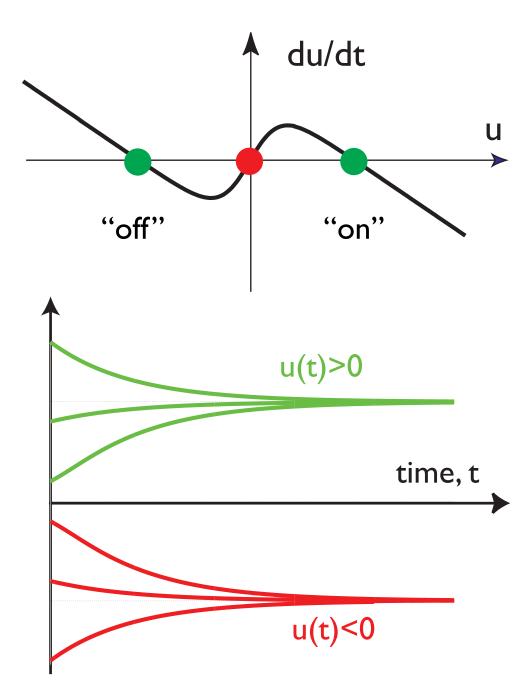
=> nonlinear dynamics!

$$\tau \dot{u}(t) = -u(t) + h + s(t) + c \ \sigma(u(t))$$

varying input



$$\tau \dot{u}(t) = -u(t) + h + s(t) + c \ \sigma(u(t))$$

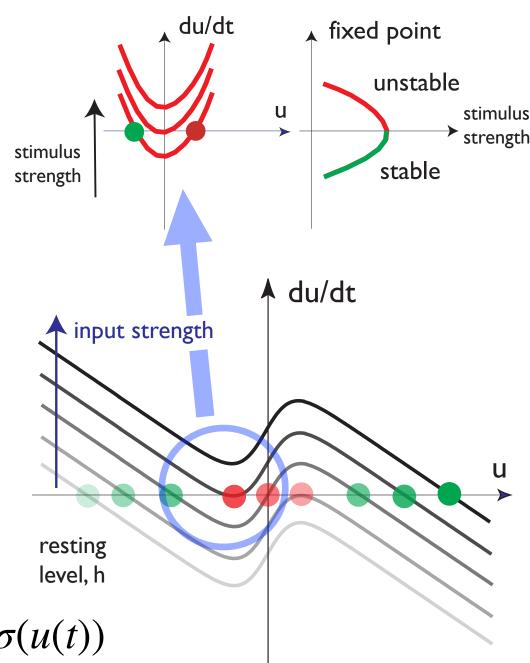


- for some inputs: bistable dynamics
- "on" vs "off" state

$$\tau \dot{u}(t) = -u(t) + h + s(t) + c \ \sigma(u(t))$$

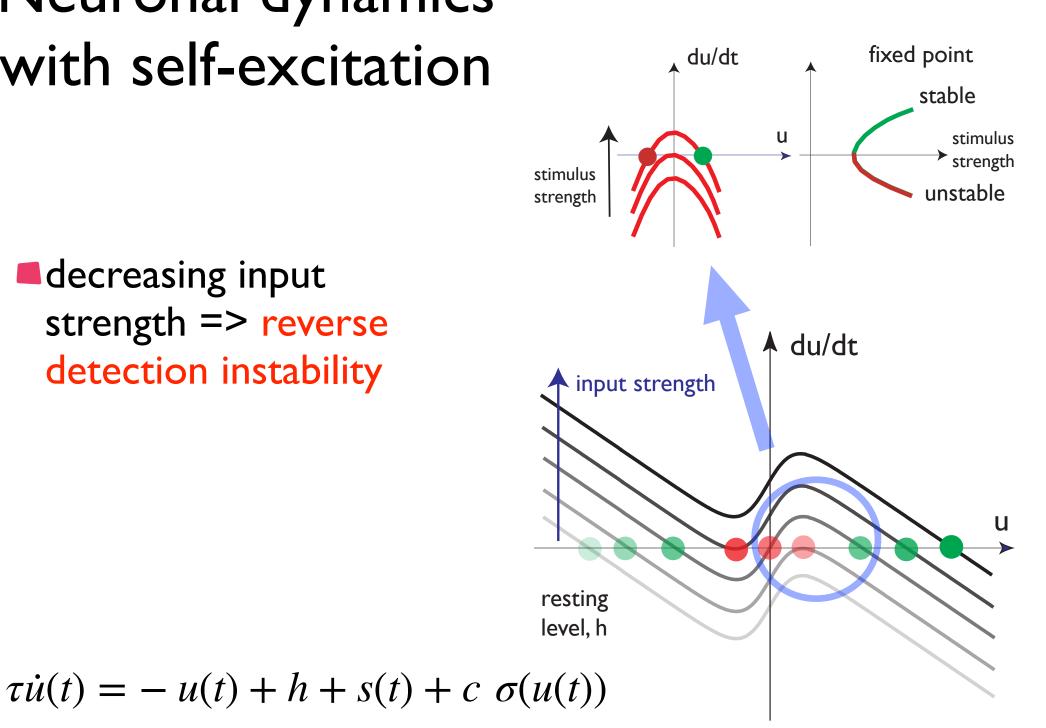
increasing input strength

=> detection instability



$$\tau \dot{u}(t) = -u(t) + h + s(t) + c \ \sigma(u(t))$$

decreasing input strength => reverse detection instability



=> simulation

dynamicfieldtheory.org

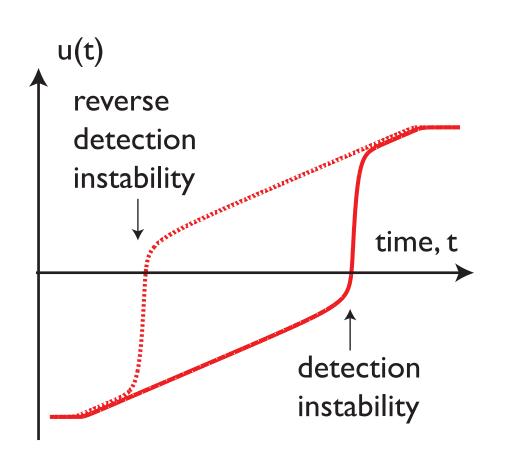
OXFORD SERIES IN DEVELOPMENTAL COGNITIVE NEUROSCIENCE

Dynamic Thinking

A PRIMER ON DYNAMIC FIELD THEORY

Gregor Schöner, John P. Spencer, and the DFT Research Group

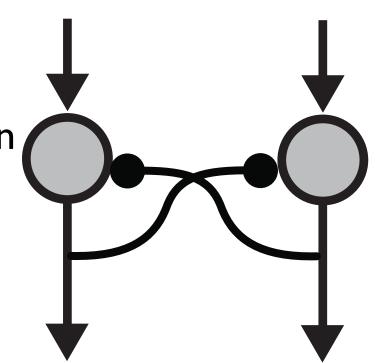
the detection and its reverse => create discrete events from time-continuous changes



$$\tau \dot{u}(t) = -u(t) + h + s(t) + c \ \sigma(u(t))$$

two activation variables with reciprocal inhibitory connection

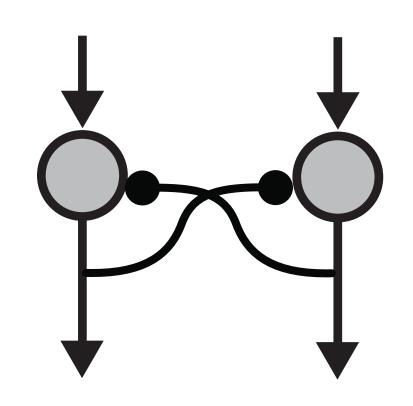
(representing two small populations with inhibitory connections)



$$\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) - c_{12}\sigma(u_2(t))$$

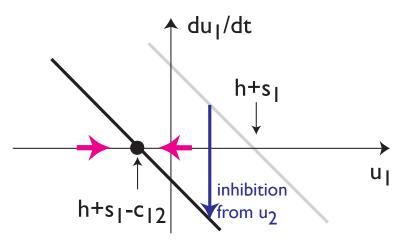
$$\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) - c_{21}\sigma(u_1(t))$$

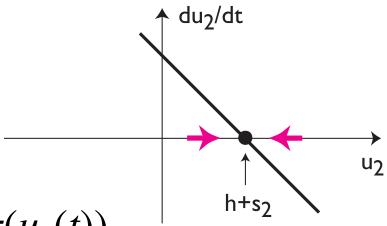
Coupling/interaction: the rate of change of one activation variable depends on the level of activation of the other activation variable



coupling/interaction $\tau \dot{u}_{1}(t) = -u_{1}(t) + h + s_{1}(t) - c_{12}\sigma(u_{2}(t))$ $\tau \dot{u}_{2}(t) = -u_{2}(t) + h + s_{2}(t) - c_{21}\sigma(u_{1}(t))$

- \blacksquare assume $u_2 > 0 => u_2$ inhibits u_1
- \blacksquare => attractor for $u_1 < 0$
- \blacksquare => u_1 does not inhibit u_2

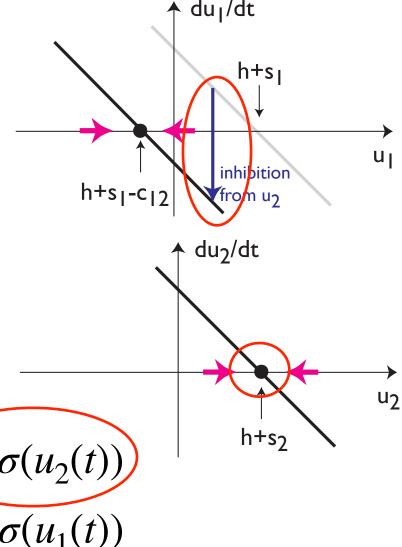




$$\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) - c_{12}\sigma(u_2(t))$$

$$\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) - c_{21}\sigma(u_1(t))$$

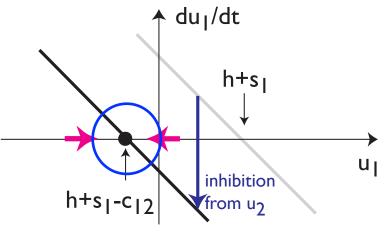
- assume $u_2 > 0 => u_2$ inhibits u_1
- \blacksquare => attractor for $u_1 < 0$
- \blacksquare => u_1 does not inhibit u_2

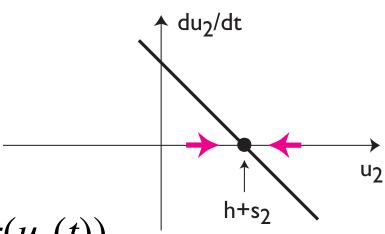


$$\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) + c_{12}\sigma(u_2(t))$$

$$\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) - c_{21}\sigma(u_1(t))$$

- \blacksquare assume $u_2 > 0 => u_2$ inhibits u_1
- \blacksquare => attractor for $u_1 < 0$
- \blacksquare => u_1 does not inhibit u_2

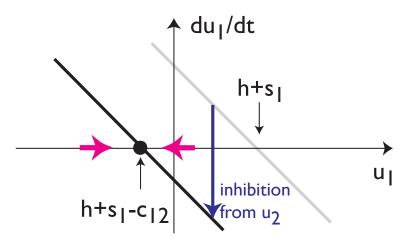


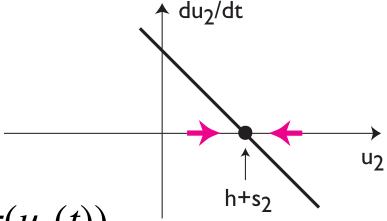


$$\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) - c_{12}\sigma(u_2(t))$$

$$\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) - c_{21}\sigma(u_1(t))$$

- \blacksquare assume $u_2 > 0 => u_2$ inhibits u_1
- \blacksquare => attractor for $u_1 < 0$
- \blacksquare => u_1 does not inhibit u_2

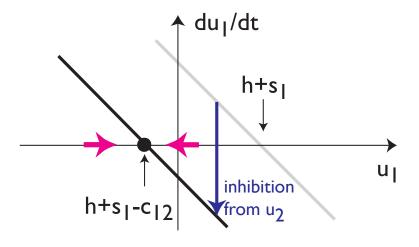


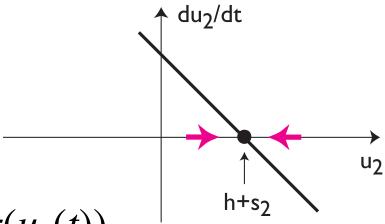


$$\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) - c_{12}\sigma(u_2(t))$$

$$\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) + c_{21}\sigma(u_1(t))$$

- $u_2 > 0$ and $u_1 < 0$
- \blacksquare symmetry: $u_2 < 0$ and $u_1 > 0$
- => competition/selection





$$\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) - c_{12}\sigma(u_2(t))$$

$$\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) - c_{21}\sigma(u_1(t))$$

=> simulation

dynamicfieldtheory.org

OXFORD SERIES IN DEVELOPMENTAL COGNITIVE NEUROSCIENCE

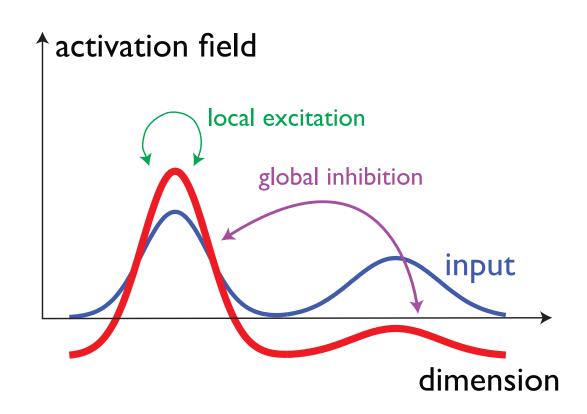
Dynamic Thinking

A PRIMER ON DYNAMIC FIELD THEORY

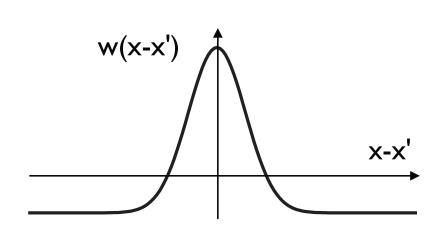
Gregor Schöner, John P. Spencer, and the DFT Research Group

Neural dynamics of fields

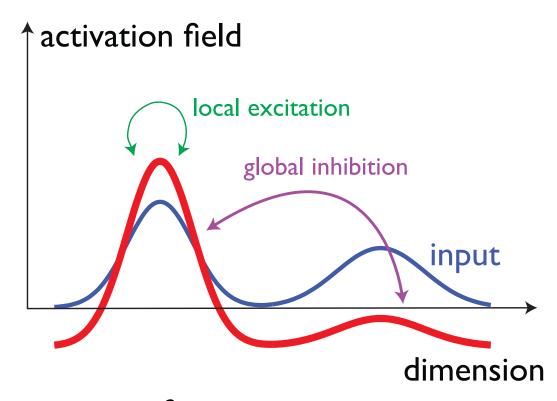
- combine detection with selection
- => local excitation/ global inhibition



Neural dynamics of fields

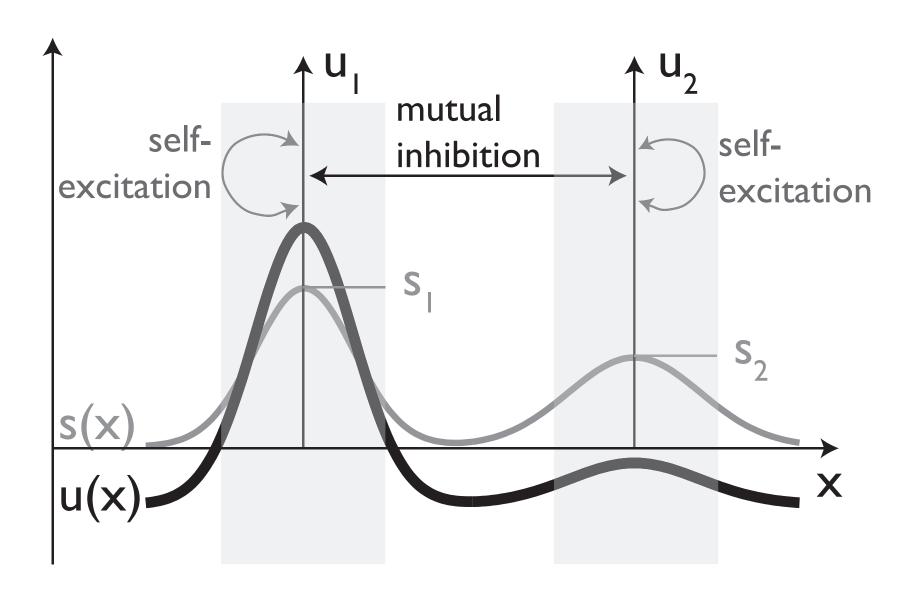


$$w(x - x') = w_{\text{exc}} e^{-\frac{(x - x')^2}{2\sigma^2}} - w_{\text{inh}}$$



$$\tau \dot{u}(x,t) = -u(x,t) + h + s(x,t) + \int dx' \ w(x-x') \ \sigma(u(x'))$$

Relationship to the dynamics of discrete activation variables



=> simulation

dynamicfieldtheory.org

OXFORD SERIES IN DEVELOPMENTAL COGNITIVE NEUROSCIENCE

Dynamic Thinking

A PRIMER ON DYNAMIC FIELD THEORY

Gregor Schöner, John P. Spencer, and the DFT Research Group

Attractors and their instabilities

- input driven solution (subthreshold)
- self-stabilized solution (peak, supra-threshold)
- selection / selection instability
- working memory / memory instability
- boost-driven detection instability

detection instability

reverse detection instability

Noise is critical near instabilities

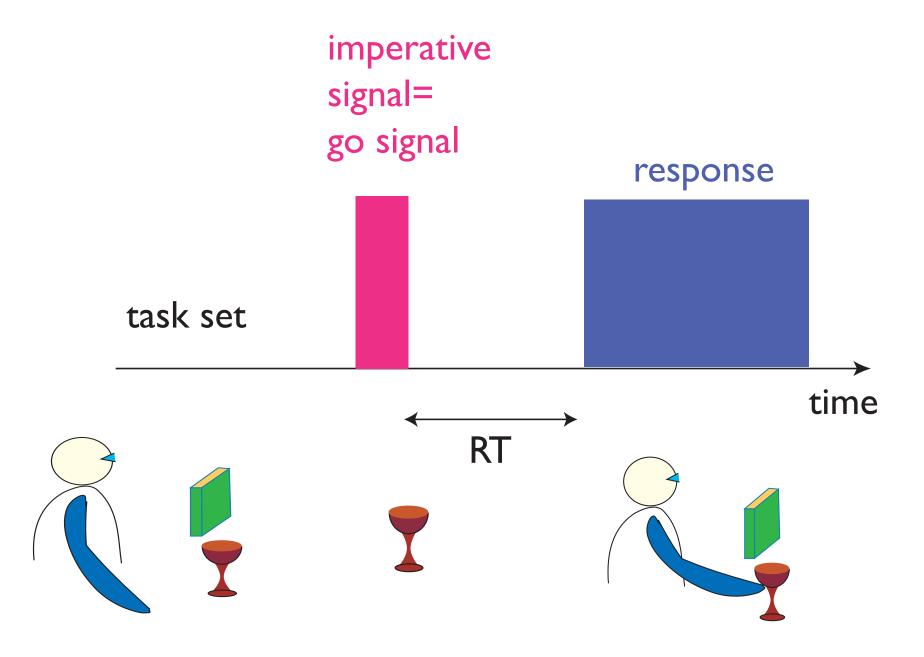
Dynamic regimes

- which attractors and instabilities arise as input patterns are varied
- examples
 - "'perceptual regime'': mono-stable sub-threshold => bistable sub-threshold/peak => mono-table peak..
 - "working memory regime" bistable sub-threshold/peak => mono-table peak.. without mono-stable sub-threshold
 - single ("selective") vs. multi-peak regime

Case study: DFT account of sensory-motor decision making

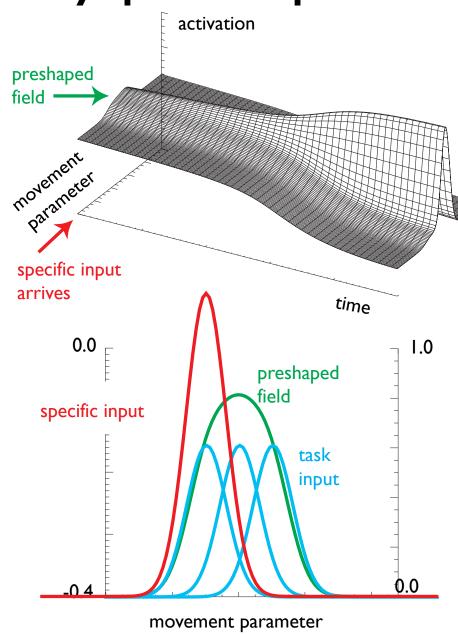
- assessed in reaction-time tasks
- information processing: how much information is processed...
- DFT: contents of task matters... embodiment
- DFT: decisions evolve continuously in time and metric space

Reaction time (RT) paradigm

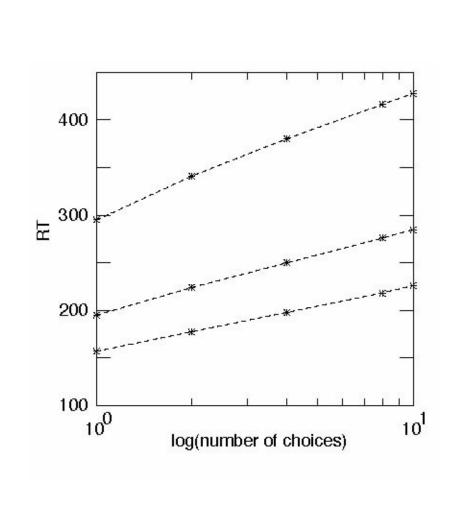


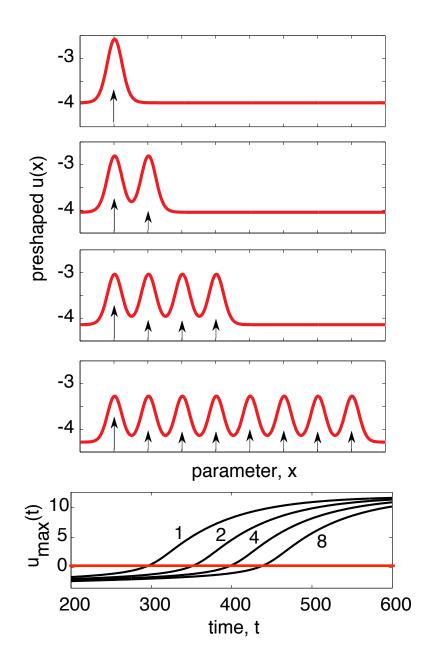
Model the task set by preshape

- which choices are available
 - how many, how probable
 - how different from each other
 - how easy to recognize/perform
- choices known to the participant before the imperative signal comes
- => preshape the field



Hick's law: RT increases with # choices

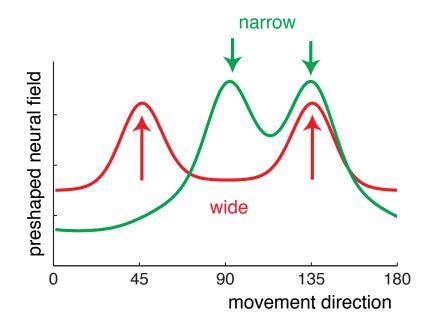


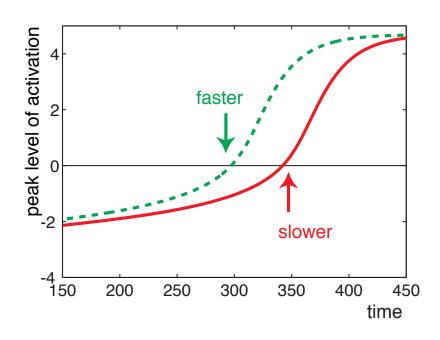


[Erlhagen, Schöner, Psych Rev 2002]

Metric effect

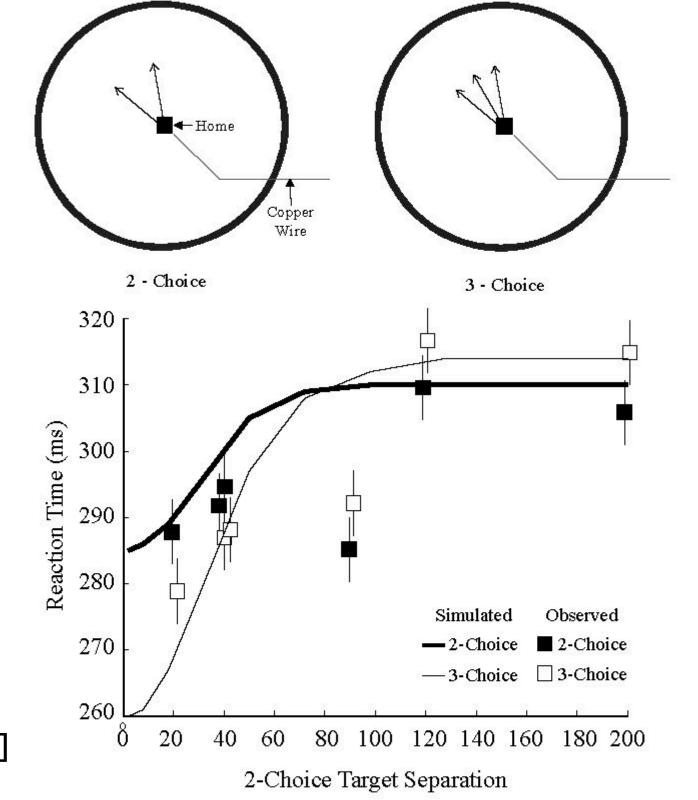
predict faster response times for metrically close than for metrically far choices



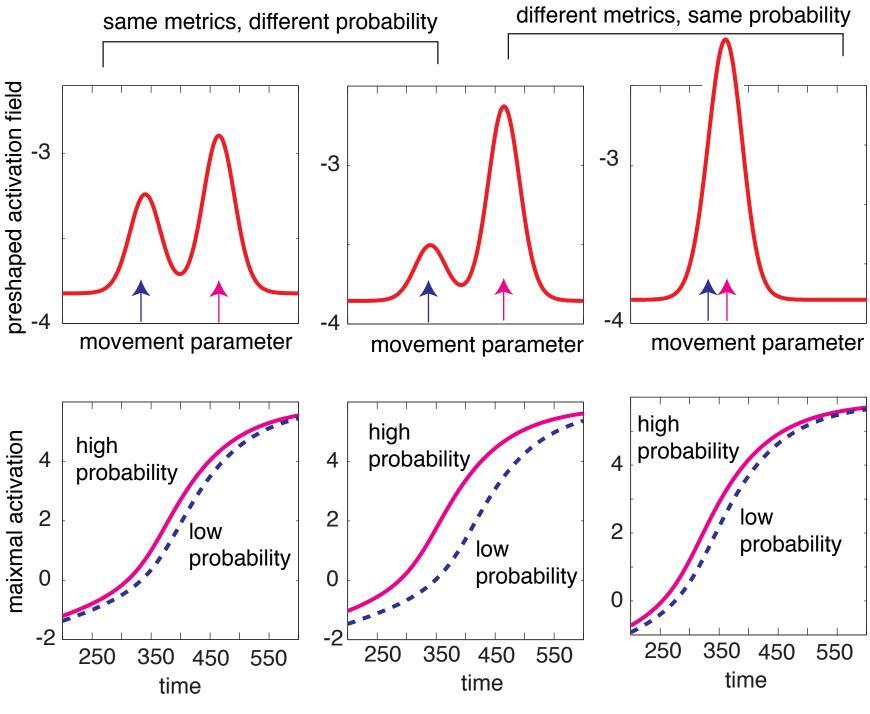


[from Schöner, Kopecz, Erlhagen, 1997]

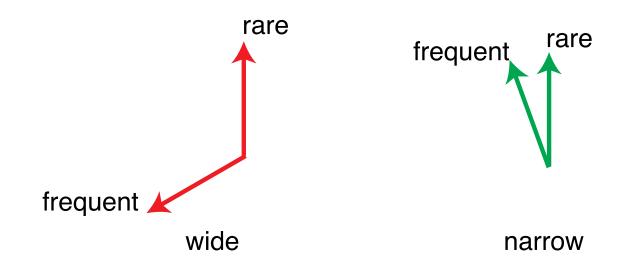
Metric effect: experiment

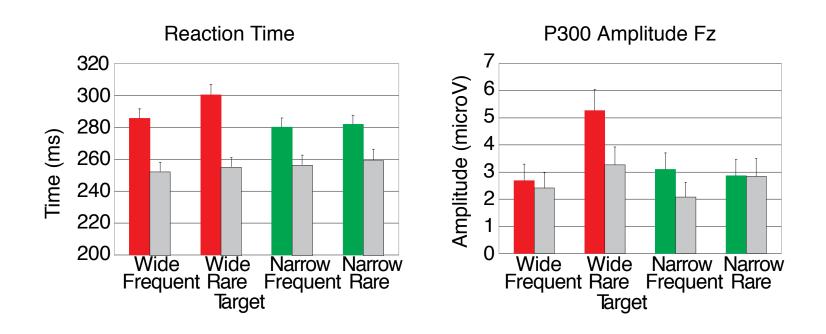


[McDowell, Jeka, Schöner]



[from Erlhagen, Schöner: Psych. Rev. 2002]





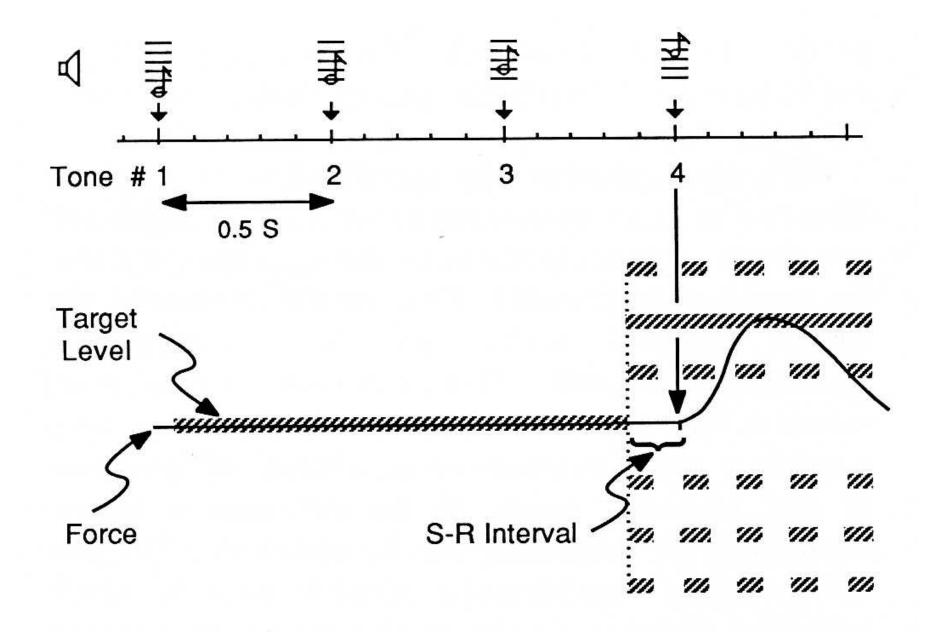
[from McDowell, Jeka, Schöner, Hatfield, 2002]

Continuous evolution of sensory-motor decisions

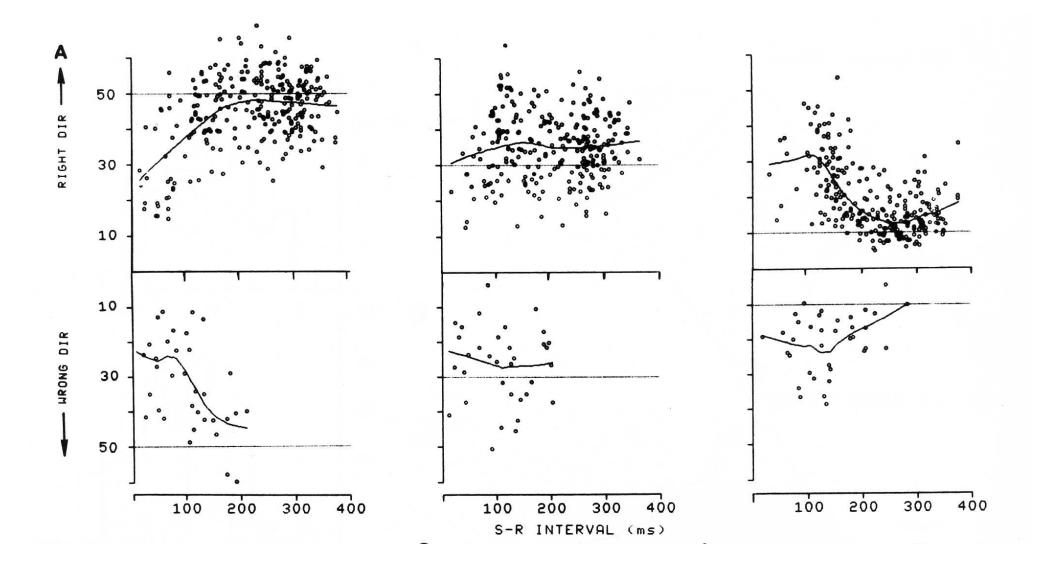
timed movement initiation paradigm



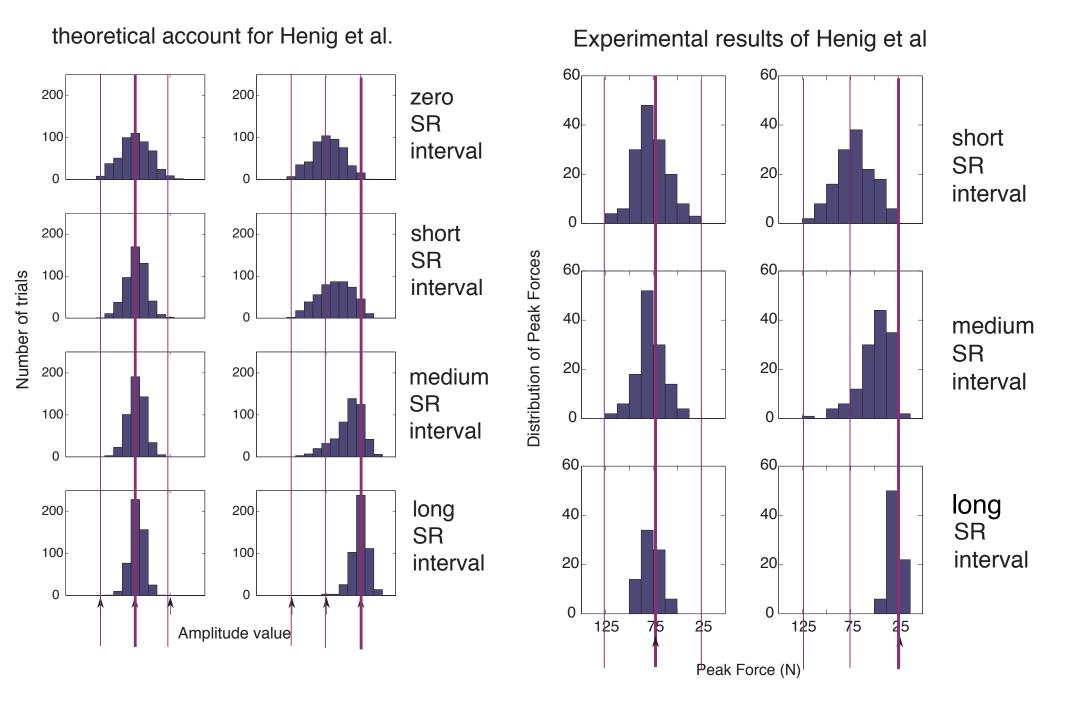
[Ghez and colleagues, 1988 to 1990's]



[Favilla et al. 1989]



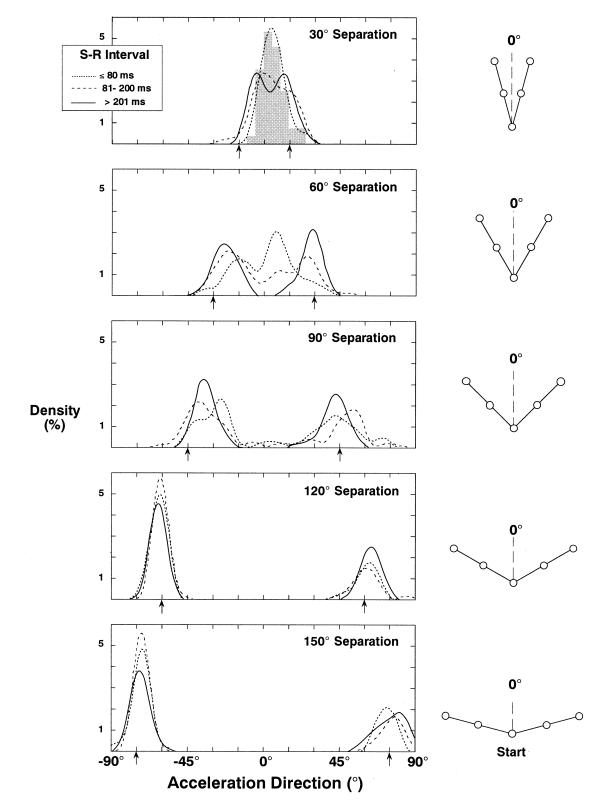
[Favilla et al. 1989]



[Erlhagen, Schöner: Psychological Review 109, 545–572 (2002)]

Metric effect

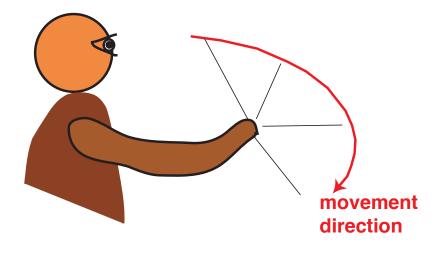
- directly observe the preshaped field ...
- and infer the width of preshape peaks

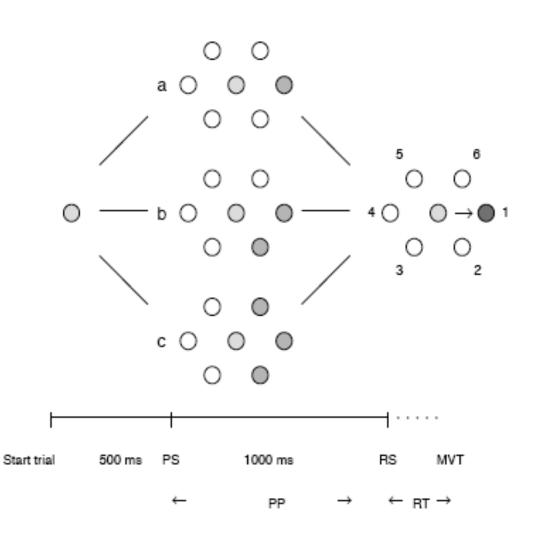


[Ghez et al 1997]

Neural observation of field

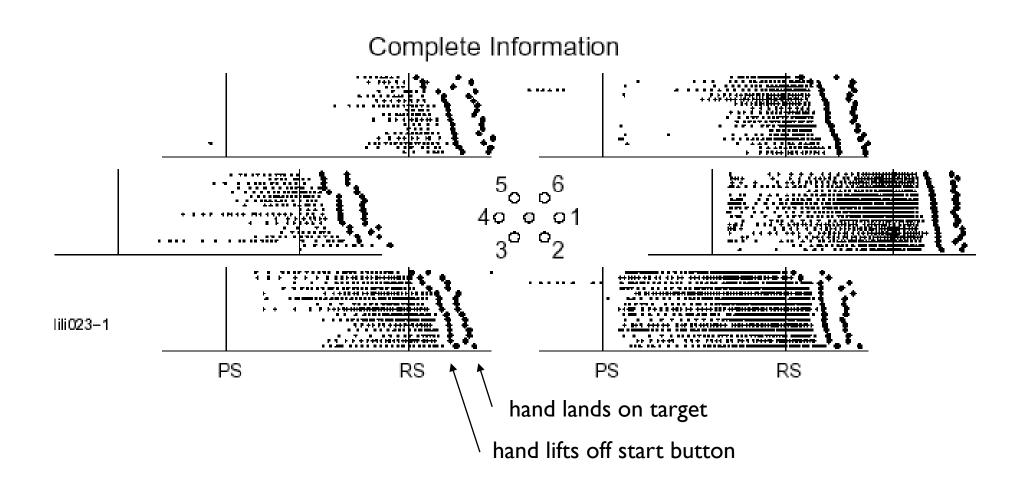
- center-out sensorimotor selection task
- varying prior information
- macaque





Bastian, Riehle, Schöner, 2003

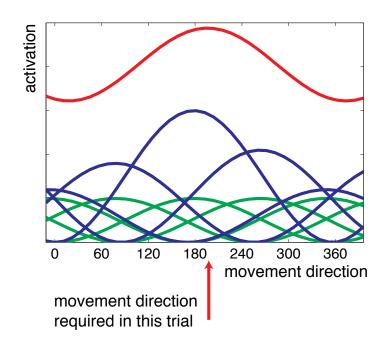
Tuning of neurons in MI to movement direction

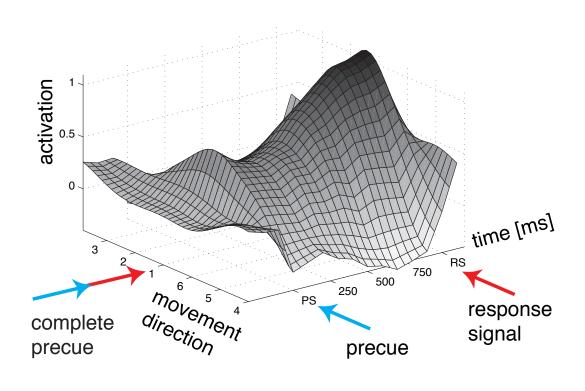


Distribution of Population Activation (DPA) <=> neural field

Distribution of population activation =

 \sum_{neurons} tuning curve * current firing rate





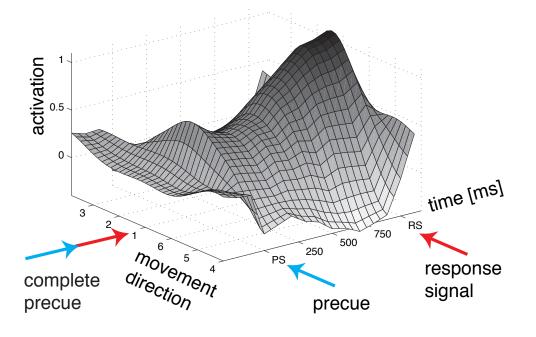
note: neurons are not localized within DPA!

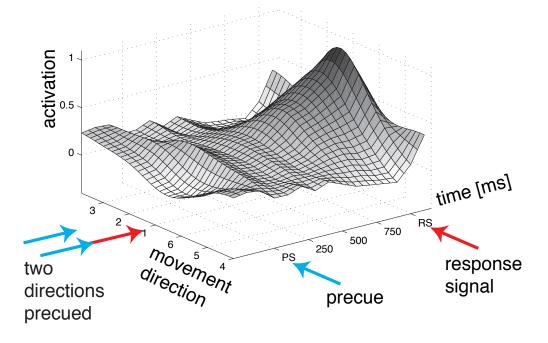
[Bastian, Riehle, Schöner, 2003]

DPA

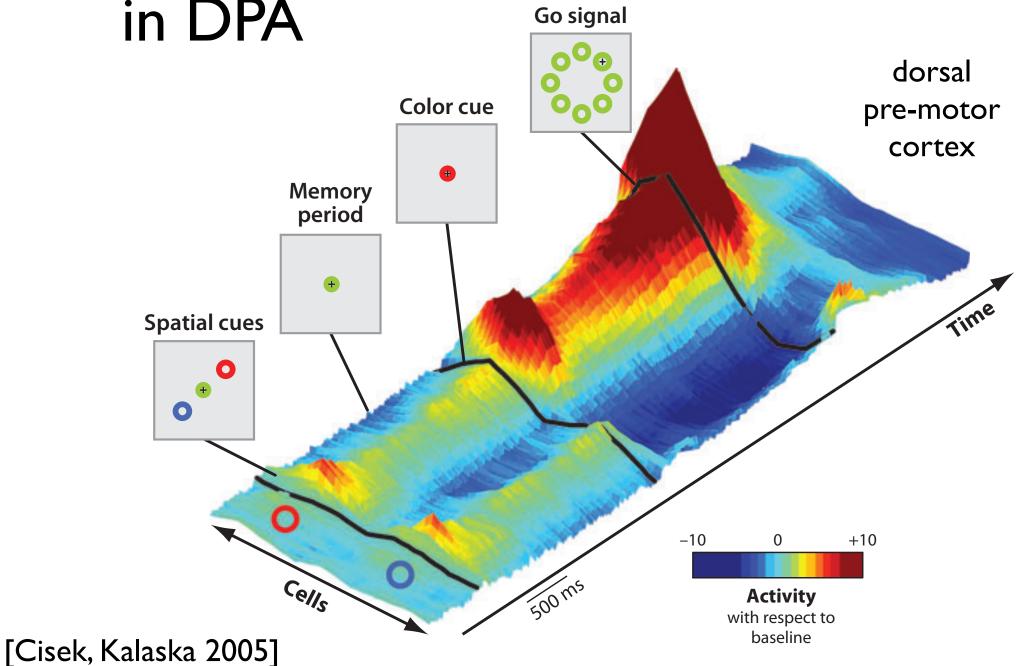
- note: neurons are not localized within DPA!
- [notion of projection cortical neurons really are sensitive to many dimensions
 - motor: arm configuration, force direction
 - visual: many feature dimensions such as spatial frequency, orientation, direction...
- => DPA is a projection from that highdimensional space onto a single dimension]

DPA pre-shaped by pre-cue





Decision making in DPA

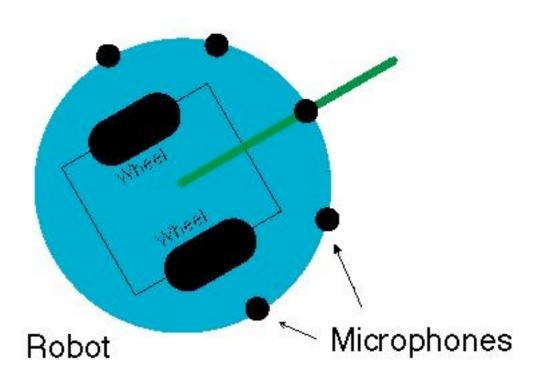


Case study: embodiment

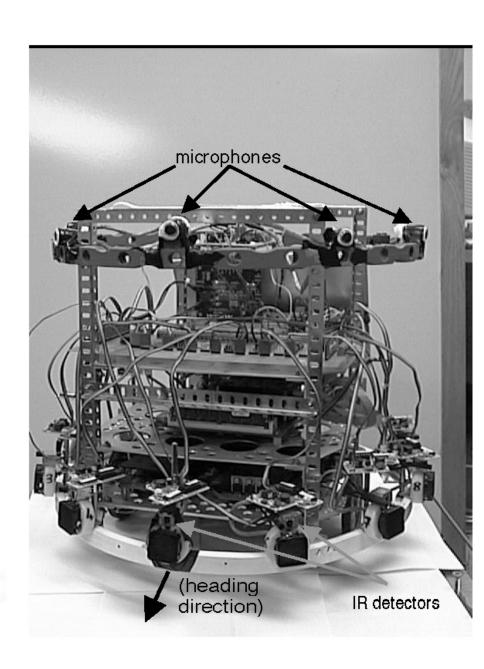
neural dynamic fields can be linked to timevarying sensory inputs and can control motor systems in closed loop

Driving fields from sensory signals

robot that orients toward sound sources

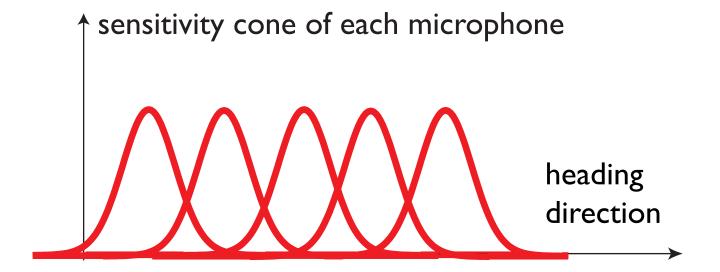


[from Bicho, Mallet, Schöner, Int J Rob Res,2000]



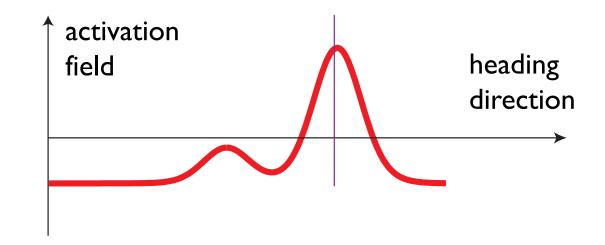
Sensory surface

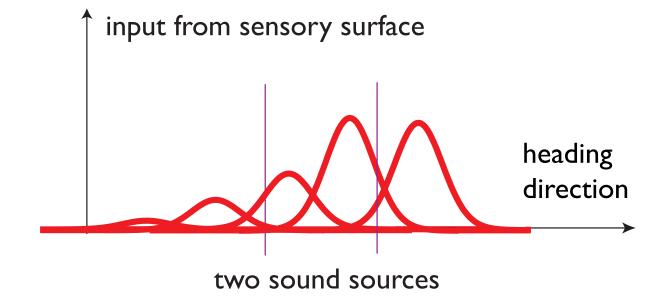
each microphone samples heading direction



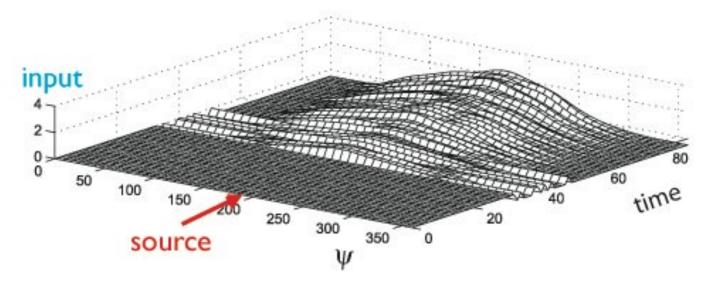
Sensory input

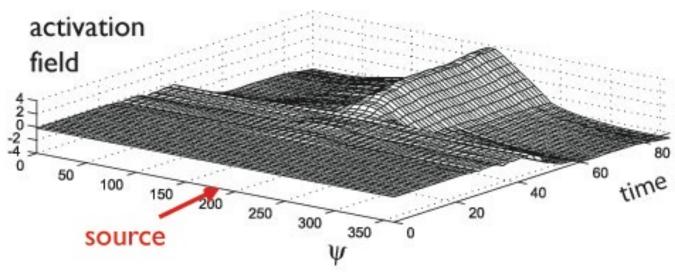
each microphone provides input to the field = loudness * sensitivity cone

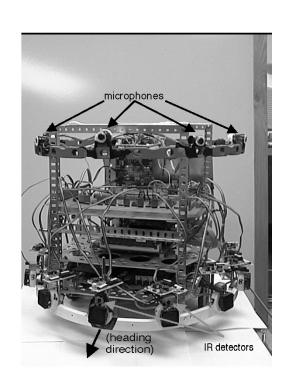




Detection instability as intensity of sound source increases

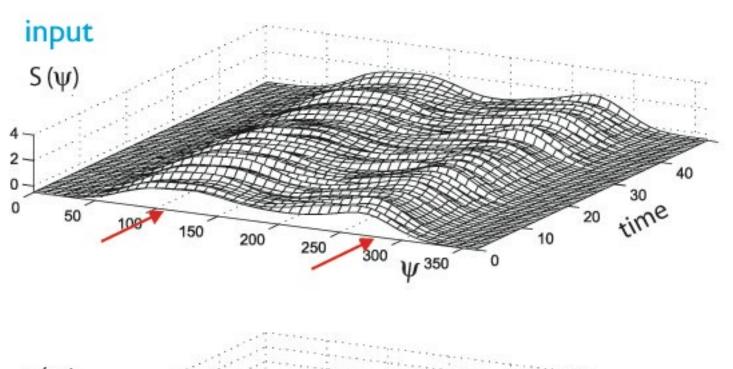


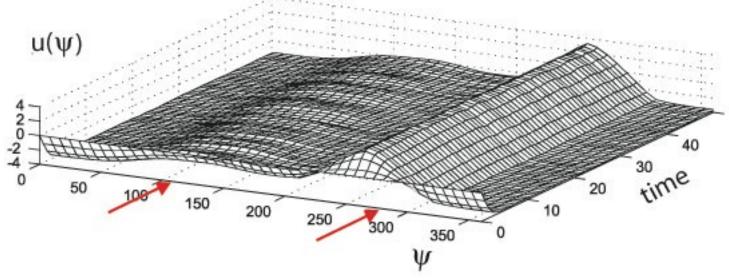




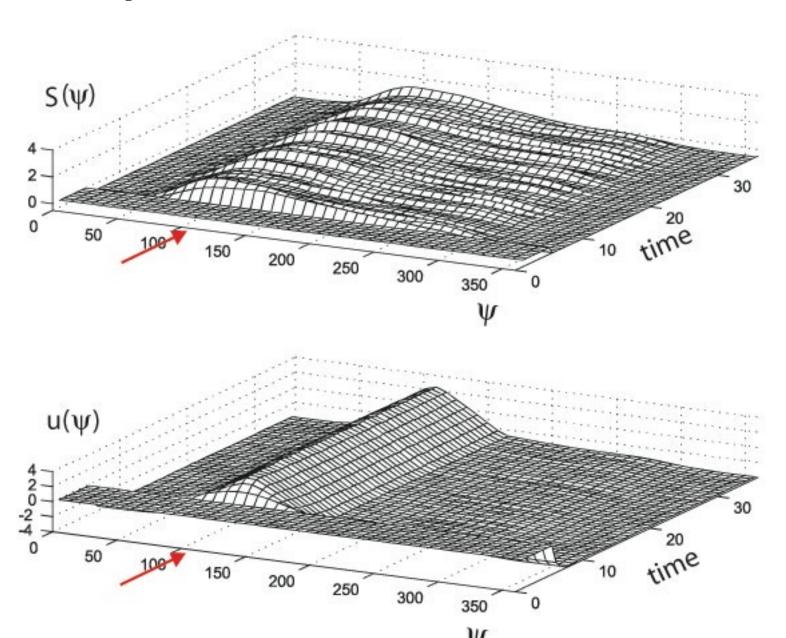
[from Bicho, Mallet, Schöner: Int. J. Rob. Res., 2000]

Target selection in the presence of two sources

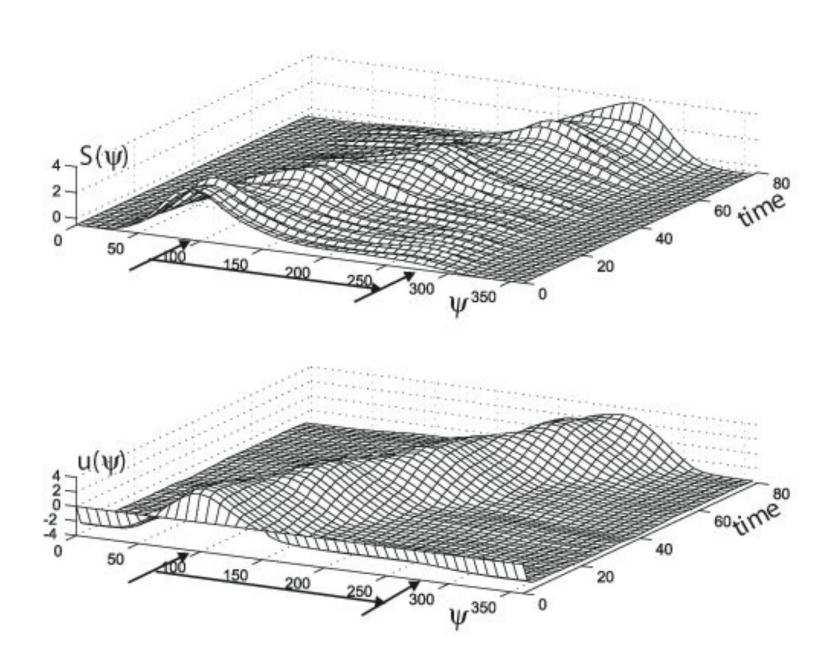




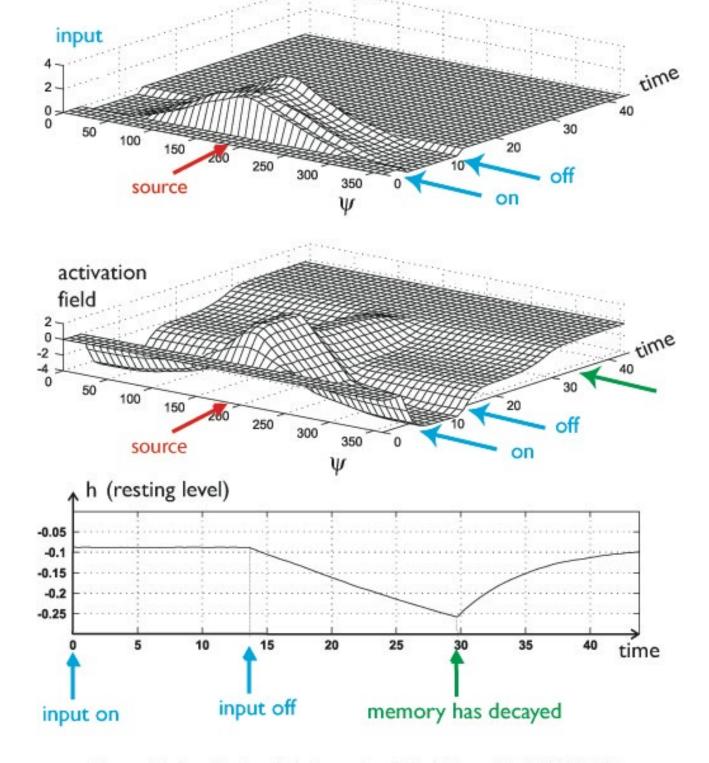
Robust estimation in the presence of outliers



Tracking moving sound source



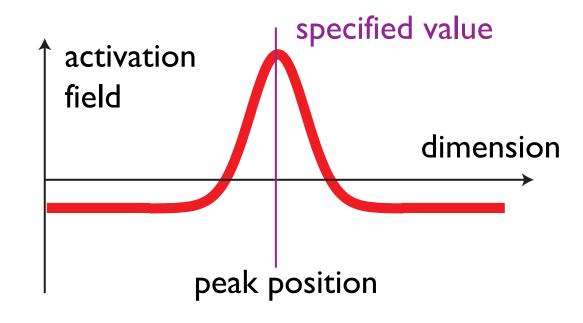
Working memory



[from Bicho, Mallet, Schöner: Int J Rob Res 19:424(2000)]

How to generate the behavior?

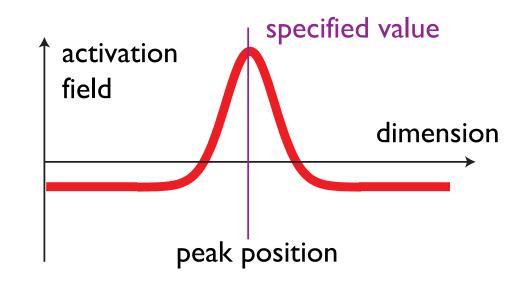
"reading out" the peak location to specify heading?

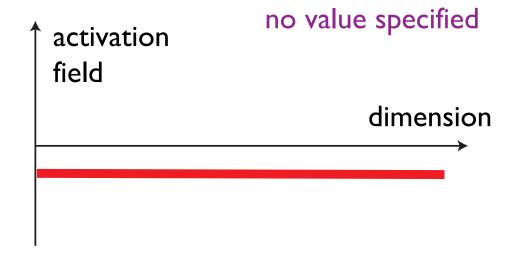


"Reading out" from a neural field?

- standard idea: $\sigma(u)$ probability density
- but: normalization!
- => problem when there is no peak: divide by zero!

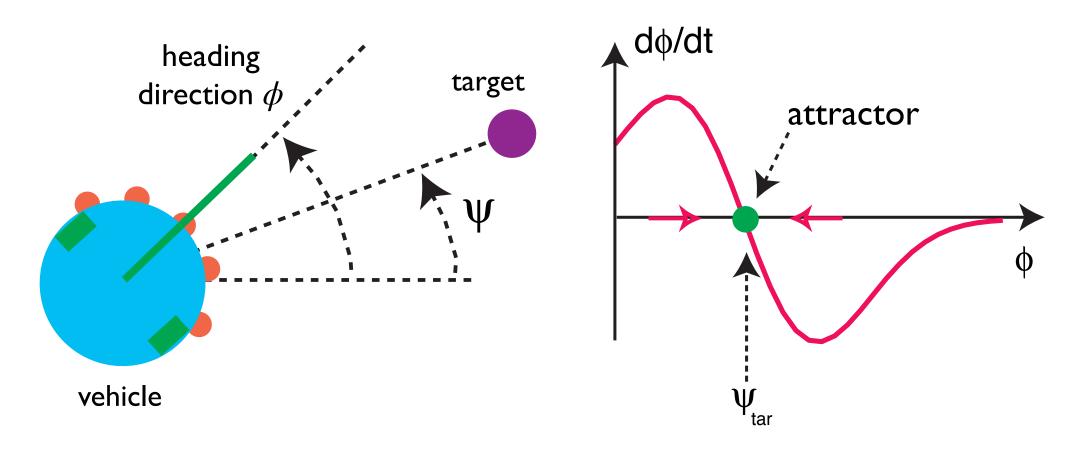
$$\phi_{\text{peak}} = \frac{\int d\phi \ \phi \ \sigma(u(\phi, t))}{\int d\phi' \ \sigma(u(\phi', t))}$$



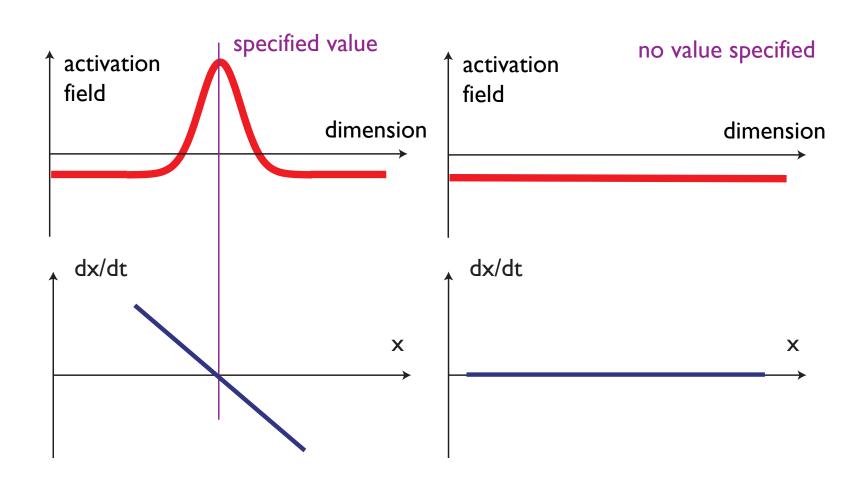


Generating behavior actually entails dynamics

behavioral dynamics with attractor at desired heading



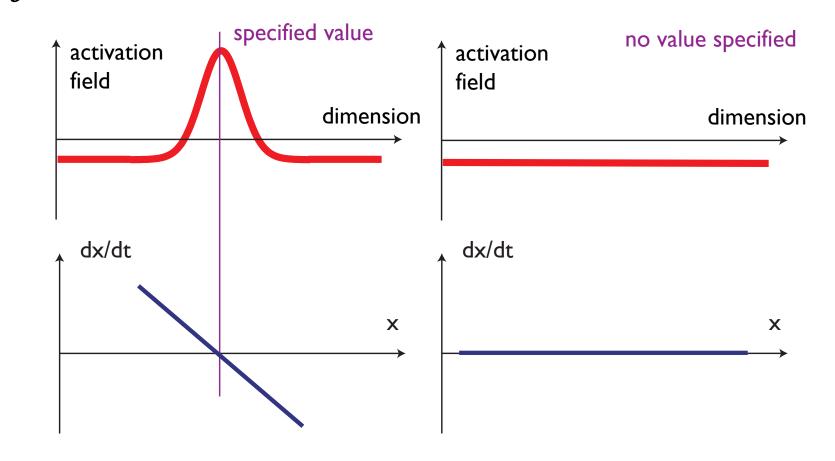
"Reading out" => erect an attractor!



"Read out" => erect an attractor!

$$\dot{\phi} = -\left[\int d\phi' \sigma(u(\phi', t))\right] (\phi - \phi_{\text{peak}})$$

$$= -\left[d\phi' (\phi - \phi') \sigma(u(\phi', t))\right]$$



Conclusion

- sensory-motor cognition from neural dynamic fields that are coupled to sensory surfaces and act on the motor surfaces (through behavioral dynamics)
- instabilities make decisions
 - detection
 - selection
 - working memory

Outlook

how do we go from sensory-motor cognition to "real" cognition?